Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 94(1-1): 011202, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27575070

RESUMO

We have performed spectrally resolved x-ray scattering measurements on highly compressed polystyrene at pressures of several tens of TPa (100 Mbar) created by spherically convergent shocks at the National Ignition Facility. Scattering data of line radiation at 9.0 keV were recorded from the dense plasma shortly after shock coalescence. Accounting for spatial gradients, opacity effects, and source broadening, we demonstrate the sensitivity of the elastic scattering component to carbon K-shell ionization while at the same time constraining the temperature of the dense plasma. For six times compressed polystyrene, we find an average temperature of 86 eV and carbon ionization state of 4.9, indicating that widely used ionization models need revision in order to be suitable for the extreme states of matter tested in our experiment.

2.
Sci Rep ; 6: 28094, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321697

RESUMO

Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations.

3.
Rev Sci Instrum ; 85(11): 11D606, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430182

RESUMO

We have measured the time-resolved x-ray continuum emission spectrum of ∼30 times compressed polystyrene created at stagnation of spherically convergent shock waves within the Gbar fundamental science campaign at the National Ignition Facility. From an exponential emission slope between 7.7 keV and 8.1 keV photon energy and using an emission model which accounts for reabsorption, we infer an average electron temperature of 375 ± 21 eV, which is in good agreement with HYDRA-1D simulations.

5.
Phys Rev Lett ; 110(11): 115501, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166552

RESUMO

The strength of shock-loaded single crystal tantalum [100] has been experimentally determined using in situ broadband x-ray Laue diffraction to measure the strain state of the compressed crystal, and elastic constants calculated from first principles. The inferred strength reaches 35 GPa at a shock pressure of 181 GPa and is in excellent agreement with a multiscale strength model [N. R. Barton et al., J. Appl. Phys. 109, 073501 (2011)], which employs a hierarchy of simulation methods over a range of length scales to calculate strength from first principles.

6.
Rev Sci Instrum ; 83(11): 113904, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23206073

RESUMO

A method of obtaining powder diffraction data on dynamically compressed solids has been implemented at the Jupiter and OMEGA laser facilities. Thin powdered samples are sandwiched between diamond plates and ramp compressed in the solid phase using a gradual increase in the drive-laser intensity. The pressure history in the sample is determined by back-propagation of the measured diamond free-surface velocity. A pulse of x rays is produced at the time of peak pressure by laser illumination of a thin Cu or Fe foil and collimated at the sample plane by a pinhole cut in a Ta substrate. The diffracted signal is recorded on x-ray sensitive material, with a typical d-spacing uncertainty of ~0.01 Å. This diagnostic has been used up to 0.9 TPa (9 Mbar) to verify the solidity, measure the density, constrain the crystal structure, and evaluate the strain-induced texturing of a variety of compressed samples spanning atomic numbers from 6 (carbon) to 82 (lead). Further refinement of the technique will soon enable diffraction measurements in solid samples at pressures exceeding 1 TPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...