Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-34527819

RESUMO

INTRODUCTION: With no effective treatment for xerostomia, there remains an unmet need to reduce radiation induced toxicity. Measuring physiological changes during RT in salivary glands using DW-MRI may predict which patients are most at risk of severe toxicity. This study evaluated the feasibility of measuring apparent diffusion coefficient (ADC) in the major salivary glands and describes the observed changes in volume and ADC during RT. METHODS: Scans were acquired at baseline (MR_base) and after 10 fractions (MR_rpt). Sequences included T1 post contrast fat saturated (T1PCFS) and DW-MRI (5b values, 0-1000 s/mm2). Ipsilateral and contralateral parotid (iPG/cPG), submandibular (iSMG/cSMG) and sublingual glands (iSLG/cSLG) were delineated on T1PCFS, modified on b0 and copied to the ADC map. RESULTS: 31 patients with intermediate/high risk squamous cell carcinoma (SCC) of the oropharynx were evaluated. On 124 scans, SMG and SLG delineations were successful on all; parotids were fully contoured in 90.7%. Baseline mean ADC were significantly different between each gland type (p < 0.0001). IPG and cPG volume decreased during treatment by 6.7% and 11.2%. ISMG, cSMG, iSLG and cSLG volume increased by 6.9, 0.9, 60.8 and 60.3% respectively. All structures showed an increase in mean_ADC values. For each gland the increase in ADC was statistically significant p < 0.0001. A smaller mean percentage increase in ADC was observed in the group experiencing a higher grade (2 or > ) of toxicity. CONCLUSION: It is feasible to measure volume and ADC of the salivary glands prior to and during RT for HNC. Early data suggests a lower rise in ADC during treatment is associated with more severe late xerostomia.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32226833

RESUMO

OBJECTIVES: The study aimed to assess the suitability of deformable image registration (DIR) software to generate synthetic CT (sCT) scans for dose verification during radiotherapy to the head and neck. Planning and synthetic CT dose volume histograms were compared to evaluate dosimetric changes during the treatment course. METHODS: Eligible patients had locally advanced (stage III, IVa and IVb) oropharyngeal cancer treated with primary radiotherapy. Weekly CBCT images were acquired post treatment at fractions 1, 6, 11, 16, 21 and 26 over a 30 fraction treatment course. Each CBCT was deformed with the planning CT to generate a sCT which was used to calculate the dose at that point in the treatment. A repeat planning CT2 was acquired at fraction 16 and deformed with the fraction 16 CBCT to compare differences between the calculations mid-treatment. RESULTS: 20 patients were evaluated generating 138 synthetic CT sets. The single fraction mean dose to PTV_HR between the synthetic and planning CT did not vary, although dose to 95% of PTV_HR was smaller at week 6 compared to planning (difference 2.0%, 95% CI (0.8 to 3.1), p = 0.0). There was no statistically significant difference in PRV_brainstem or PRV_spinal cord maximum dose, although greater variation using the sCT calculations was reported. The mean dose to structures based on the fraction 16 sCT and CT2 scans were similar. CONCLUSIONS: Synthetic CT provides comparable dose calculations to those of a repeat planning CT; however the limitations of DIR must be understood before it is applied within the clinical setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...