Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38870995

RESUMO

In this short article, we overview a concept of electronic toroidal multipoles, and their ordering with associated physical properties in non-magnetic and magnetic materials. The toroidal multipoles are introduced as microscopic electronic variables in view of symmetry and connection to Dirac theory. They are classified according to crystallographic and magnetic point groups, which allows us to discuss various possible cross correlations in a transparent and unified manner. The representative examples of toroidal orders and related phenomena, and the mutual relationship between these orders are given, with focusing on monopoles and dipoles. The concept of toroidal multipoles would promote future studies toward observations and identifications of unknown electronic phases and their related physical phenomena. .

2.
Nat Commun ; 14(1): 8050, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052859

RESUMO

Magnetic skyrmions, topological vortex-like spin textures, garner significant interest due to their unique properties and potential applications in nanotechnology. While they typically form a hexagonal crystal with distinct internal magnetisation textures known as Bloch- or Néel-type, recent theories suggest the possibility for direct transitions between skyrmion crystals of different lattice structures and internal textures. To date however, experimental evidence for these potentially useful phenomena have remained scarce. Here, we discover the polar tetragonal magnet EuNiGe3 to host two hybrid skyrmion phases, each with distinct internal textures characterised by anisotropic combinations of Bloch- and Néel-type windings. Variation of the magnetic field drives a direct transition between the two phases, with the modification of the hybrid texture concomitant with a hexagonal-to-square skyrmion crystal transformation. We explain these observations with a theory that includes the key ingredients of momentum-resolved Ruderman-Kittel-Kasuya-Yosida and Dzyaloshinskii-Moriya interactions that compete at the observed low symmetry magnetic skyrmion crystal wavevectors. Our findings underscore the potential of polar magnets with rich interaction schemes as promising for discovering new topological magnetic phases.

3.
J Phys Condens Matter ; 34(46)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36103870

RESUMO

The generalization of the atomic-scale multipoles is discussed. By introducing the augmented multipoles defined in the hybrid orbitals or in the site/bond-cluster, any of electronic degrees of freedom can be expressed in accordance with the crystallographic point group. These multipoles are useful to describe the cross-correlated phenomena, band-structure deformation, and generation of effective spin-orbit coupling due to antiferromagnetic ordering in a systematic and comprehensive manner. Such a symmetry-adapted multipole basis set could be a promising descriptor for materials design and informatics.

4.
J Phys Condens Matter ; 34(36)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35738246

RESUMO

We investigate an instability toward a square-lattice formation of magnetic skyrmions in centrosymmetric layered systems. By focusing on a bilayer square-lattice structure with the inversion center at the interlayer bond instead of the atomic site, we numerically examine the stability of the square skyrmion crystal (SkX) based on an effective spin model with the momentum-resolved interaction in the ground state through the simulated annealing. As a result, we find that a layer-dependent staggered Dzyaloshinskii-Moriya (DM) interaction built in the lattice structure becomes the origin of the square SkX in an external magnetic field irrespective of the sign of the interlayer exchange interaction. The obtained square SkX is constituted of the SkXs with different helicities in each layer due to the staggered DM interaction. Furthermore, we show that the interplay between the staggered DM interaction and the interlayer exchange interaction gives rise to a double-Qstate with a uniform component of the scalar chirality in the low-field region. The present results provide another way of stabilizing the square SkX in centrosymmetric magnets, which will be useful to explore further exotic topological spin textures.

5.
Nat Commun ; 13(1): 1472, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354812

RESUMO

Magnetic skyrmions are topologically stable swirling spin textures with particle-like character, and have been intensively studied as a candidate of high-density information bit. While magnetic skyrmions were originally discovered in noncentrosymmetric systems with Dzyaloshinskii-Moriya interaction, recently a nanometric skyrmion lattice has also been reported for centrosymmetric rare-earth compounds, such as Gd2PdSi3 and GdRu2Si2. For the latter systems, a distinct skyrmion formation mechanism mediated by itinerant electrons has been proposed, and the search of a simpler model system allowing for a better understanding of their intricate magnetic phase diagram is highly demanded. Here, we report the discovery of square and rhombic lattices of nanometric skyrmions in a centrosymmetric binary compound EuAl4, by performing small-angle neutron and resonant elastic X-ray scattering experiments. Unlike previously reported centrosymmetric skyrmion-hosting materials, EuAl4 shows multiple-step reorientation of the fundamental magnetic modulation vector as a function of magnetic field, probably reflecting a delicate balance of associated itinerant-electron-mediated interactions. The present results demonstrate that a variety of distinctive skyrmion orders can be derived even in a simple centrosymmetric binary compound, which highlights rare-earth intermetallic systems as a promising platform to realize/control the competition of multiple topological magnetic phases in a single material.

6.
Adv Sci (Weinh) ; 9(10): e2105452, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088568

RESUMO

Magnetic skyrmion is a topologically stable particle-like swirling spin texture potentially suitable for high-density information bit, which was first observed in noncentrosymmetric magnets with Dzyaloshinskii-Moriya interaction. Recently, nanometric skyrmion has also been discovered in centrosymmetric rare-earth compounds, and the identification of their skyrmion formation mechanism and further search of nontrivial spin textures are highly demanded. Here, magnetic structures in a prototypical skyrmion-hosting centrosymmetric tetragonal magnet GdRu2 Si2 is exhaustively studied by performing the resonant X-ray scattering experiments. A rich variety of double-Q magnetic structures, including the antiferroic order of meron(half-skyrmion)/anti-meron-like textures with fractional local topological charges are identified. The observed intricate magnetic phase diagram is successfully reproduced by the theoretical framework considering the four-spin interaction mediated by itinerant electrons and magnetic anisotropy. The present results will contribute to the better understanding of the novel skyrmion formation mechanism in this centrosymmetric rare-earth compound, and suggest that itinerant electrons can ubiquitously host a variety of unique multiple-Q spin orders in a simple crystal lattice system.

7.
Nat Commun ; 12(1): 6927, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853320

RESUMO

The magnetic skyrmion crystal is a periodic array of a swirling topological spin texture. Since it is regarded as an interference pattern by multiple helical spin density waves, the texture changes with the relative phase shifts among the constituent waves. Although such a phase degree of freedom is relevant to not only magnetism but also transport properties, its effect has not been elucidated thus far. We here theoretically show that a phase shift in the skyrmion crystals leads to a tetra-axial vortex crystal and a meron-antimeron crystal, both of which show a staggered pattern of the scalar spin chirality and give rise to nonreciprocal transport phenomena without the spin-orbit coupling. We demonstrate that such a phase shift can be driven by exchange interactions between the localized spins, thermal fluctuations, and long-range chirality interactions in spin-charge coupled systems. Our results provide a further diversity of topological spin textures and open a new field of emergent electromagnetism by the phase shift engineering.

8.
J Phys Condens Matter ; 33(44)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34343975

RESUMO

Spin textures with nontrivial topology, such as vortices and skyrmions, have attracted attention as a source of unconventional magnetic, transport, and optical phenomena. Recently, a new generation of topological spin textures has been extensively studied in itinerant magnets; in contrast to the conventional ones induced, e.g., by the Dzyaloshinskii-Moriya interaction in noncentrosymmetric systems, they are characterized by extremely short magnetic periods and stable even in centrosymmetric systems. Here we review such new types of topological spin textures with particular emphasis on their stabilization mechanism. Focusing on the interplay between charge and spin degrees of freedom in itinerant electron systems, we show that itinerant frustration, which is the competition among electron-mediated interactions, plays a central role in stabilizing a variety of topological spin crystals including a skyrmion crystal with unconventional high skyrmion number, meron crystals, and hedgehog crystals. We also show that the essential ingredients in the itinerant frustration are represented by bilinear and biquadratic spin interactions in momentum space. This perspective not only provides a unified understanding of the unconventional topological spin crystals but also stimulates further exploration of exotic topological phenomena in itinerant magnets.

9.
Sci Rep ; 11(1): 11184, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045497

RESUMO

We theoretically investigate a new stabilization mechanism of a skyrmion crystal (SkX) in centrosymmetric itinerant magnets with magnetic anisotropy. By considering a trigonal crystal system without the horizontal mirror plane, we derive an effective spin model with an anisotropic Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction for a multi-band periodic Anderson model. We find that the anisotropic RKKY interaction gives rise to two distinct SkXs with different skyrmion numbers of one and two depending on a magnetic field. We also clarify that a phase arising from the multiple-Q spin density waves becomes a control parameter for a field-induced topological phase transition between the SkXs. The mechanism will be useful not only for understanding the SkXs, such as that in Gd[Formula: see text]PdSi[Formula: see text], but also for exploring further skyrmion-hosting materials in trigonal itinerant magnets.

10.
Nat Commun ; 11(1): 5925, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230104

RESUMO

Magnetic skyrmions were thought to be stabilised only in inversion-symmetry breaking structures, but skyrmion lattices were recently discovered in inversion symmetric Gd-based compounds, spurring questions of the stabilisation mechanism. A natural consequence of a recent theoretical proposal, a coupling between itinerant electrons and localised magnetic moments, is that the skyrmions are amenable to detection using even non-magnetic probes such as spectroscopic-imaging scanning tunnelling microscopy (SI-STM). Here SI-STM observations of GdRu2Si2 reveal patterns in the local density of states that indeed vary with the underlying magnetic structures. These patterns are qualitatively reproduced by model calculations which assume exchange coupling between itinerant electrons and localised moments. These findings provide a clue to understand the skyrmion formation mechanism in GdRu2Si2.

11.
Nat Commun ; 10(1): 4305, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541112

RESUMO

Spin current-a flow of electron spins without a charge current-is an ideal information carrier free from Joule heating for electronic devices. The celebrated spin Hall effect, which arises from the relativistic spin-orbit coupling, enables us to generate and detect spin currents in inorganic materials and semiconductors, taking advantage of their constituent heavy atoms. In contrast, organic materials consisting of molecules with light elements have been believed to be unsuited for spin current generation. Here we show that a class of organic antiferromagnets with checker-plate type molecular arrangements can serve as a spin current generator by applying a thermal gradient or an electric field, even with vanishing spin-orbit coupling. Our findings provide another route to create a spin current distinct from the conventional spin Hall effect and open a new field of spintronics based on organic magnets having advantages of small spin scattering and long lifetime.

12.
Phys Rev Lett ; 122(14): 147602, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050476

RESUMO

We report our theoretical results on the order parameters for the pyrochlore metal Cd_{2}Re_{2}O_{7}, which undergoes enigmatic phase transitions with inversion symmetry breaking. By carefully examining active electronic degrees of freedom based on the lattice symmetry, we propose that two parity-breaking phases at ambient pressure are described by unconventional multipoles, electric toroidal quadrupoles (ETQs) with different components, x^{2}-y^{2} and 3z^{2}-r^{2}, in the pyrochlore tetrahedral unit. We elucidate that the ETQs are activated by bond or spin-current order on Re─Re bonds. Our ETQ scenario provides a key to reconciling the experimental contradictions, by measuring ETQ specific phenomena, such as peculiar spin splittings in the electronic band structure, magnetocurrent effect, and nonreciprocal transport under a magnetic field.

13.
Phys Rev Lett ; 121(13): 137202, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312100

RESUMO

We theoretically study noncoplanar spin textures in polar magnetic conductors. Starting from the Kondo lattice model with the Rashba spin-orbit coupling, we derive an effective spin model with generalized Ruderman-Kittel-Kasuya-Yosida interactions including the anisotropic and antisymmetric exchange interactions. By performing simulated annealing for the effective model, we find that a vortex crystal of Néel type is stabilized even in the absence of a magnetic field. Moreover, we demonstrate that a Bloch-type vortex crystal, which is usually associated with the Dresselhaus spin-orbit coupling, can also be realized in our Rashba-based model. A magnetic field turns the vortex crystals into Néel- and Bloch-type Skyrmion-like crystals. Our results underscore that the interplay between the spin-orbit coupling and itinerant magnetism brings fertile possibilities of noncoplanar magnetic orderings.

14.
Phys Rev Lett ; 118(14): 147205, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430467

RESUMO

Magnetic Skyrmions are swirling spin textures with topologically protected noncoplanarity. Recently, Skyrmions with the topological number of unity have been extensively studied in both experiment and theory. We here show that a Skyrmion crystal with an unusually high topological number of two is stabilized in itinerant magnets at a zero magnetic field. The results are obtained for a minimal Kondo lattice model on a triangular lattice by an unrestricted large-scale numerical simulation and variational calculations. We find that the topological number can be switched by a magnetic field as 2↔1↔0. The Skyrmion crystals are formed by the superpositions of three spin density waves induced by the Fermi surface effect, and hence, the size of Skyrmions can be controlled by the band structure and electron filling. We also discuss the charge and spin textures of itinerant electrons in the Skyrmion crystals which are directly obtained in our numerical simulations.

15.
J Phys Condens Matter ; 28(39): 395601, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27502319

RESUMO

The spin-orbit coupling in the absence of spatial inversion symmetry plays an important role in realizing intriguing electronic states in solids, such as topological insulators and unconventional superconductivity. Usually, the inversion symmetry breaking is inherent in the lattice structures, and hence, it is not easy to control these interesting properties by external parameters. We here theoretically investigate the possibility of generating the spin-orbital entanglement by spontaneous electronic ordering caused by electron correlations. In particular, we focus on the centrosymmetric lattices with local asymmetry at the lattice sites, e.g. zigzag, honeycomb, and diamond structures. In such systems, conventional staggered orders, such as charge order and antiferromagnetic order, break the inversion symmetry and activate the antisymmetric spin-orbit coupling, which is hidden in a sublattice-dependent form in the paramagnetic state. Considering a minimal two-orbital model on a honeycomb structure, we scrutinize the explicit form of the antisymmetric spin-orbit coupling for all the possible staggered charge, spin, orbital, and spin-orbital orders. We show that the complete table is useful for understanding of spin-valley-orbital physics, such as spin and valley splitting in the electronic band structure and generalized magnetoelectric responses in not only spin but also orbital and spin-orbital channels, reflecting in peculiar magnetic, elastic, and optical properties in solids.

16.
Rep Prog Phys ; 79(8): 084504, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376461

RESUMO

The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson's proposal of a quantum spin liquid ground state for a two-dimensional lattice S = 1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect.

17.
Phys Rev Lett ; 116(18): 187202, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27203342

RESUMO

We study the effect of a nonmagnetic impurity inserted in a two-dimensional frustrated ferromagnet above its saturation magnetic field H_{sat} for arbitrary spin S. We demonstrate that the ground state includes a magnetic vortex that is nucleated around the impurity over a finite range of magnetic field H_{sat}≤H≤H_{sat}^{I}. Upon approaching the quantum critical point at H=H_{sat}, the radius of the magnetic vortex diverges as the magnetic correlation length: ξ∝1/sqrt[H-H_{sat}]. These results are derived both for the lattice and in the continuum limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...