Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(36): 14580-14589, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37638697

RESUMO

The selective formation of meta-stable Fe3O4 from ferrous sources by suppressing its oxidative conversion to the most stable hematite (α-Fe2O3) is challenging under oxidative conditions for solid-state synthesis. In this work, we investigated the conversion of iron(II) chloride (FeCl2) to magnetite (Fe3O4) under inert atmosphere in the presence of steam, and the obtained oxides were analyzed by atomic-resolution TEM, 57Fe Mössbauer spectroscopy, and the Verwey transition temperature (Tv). The reaction proceeded in two steps, with H2O as the oxide source in the initial step and as an oxidant in the second step. The initial hydrolysis occurred at temperatures higher than 120 °C to release gaseous HCl, via substituting lattice chloride Cl- with oxide O2-, to give iron oxide intermediates. In the first step, the construction of the intermediate oxides was not topotactic. The second step as a kinetic bottleneck occurred at temperatures higher than 350 °C to generate gaseous H2 through the oxidation of FeII by H+. A substantially large kinetic isotope effect (KIE) was observed for the second step at 500 °C, and this indicates the rate-determining step is the hydrogen evolution. Quantitative analysis of evolved H2 revealed that full conversion of ferrous chloride to magnetite at 500 °C was followed by additional oxidation of the outer sphere of magnetite to give a Fe2O3 phase, as supported by X-ray photoelectron spectroscopy (XPS), and the outer phase confined the conductive magnetite phase within the insulating layers, enabling kinetic control of magnetite synthesis. As such, the reaction stopped at meta-stable magnetite with an excellent saturation magnetization (σs) of 86 emu g-1 and Tv > 120 K without affording the thermodynamically stable α-Fe2O3 as the major final product. The study also discusses the influence of parameters such as reaction temperature, initial grain size of FeCl2, the extent of hydration, and partial pressure of H2O.

2.
ACS Appl Mater Interfaces ; 13(32): 38613-38622, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34370442

RESUMO

Durable nanostructured cathode materials for efficient all-solid-state Li-S batteries were prepared using a conductive single-walled 3D graphene with a large pore volume as the cathode support material. At high loadings of the active material (50-60 wt %), microscale phase segregation was observed with a conventional cathode support material during the charging/discharging processes but this was suppressed by the confinement of insulating sulfur into the mesopores of the elastic and flexible nanoporous graphene with a large pore volume of 5.3 mL g-1. As such, durable three-phase contact was achieved among the solid electrolyte, insulating sulfur, and the electrically conductive carbon. Consequently, the electrochemical performances of the assembled all-solid-state batteries were significantly improved and feasible under the harsh conditions of operation at 353 K, and improved cycling stability as well as the highest specific capacity of 716 mA h per gram of cathode (4.6 mA h cm-2, 0.2 C) was achieved with high sulfur loading (50 wt %).

3.
Chem Commun (Camb) ; 57(49): 6007-6010, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34036990

RESUMO

Force-responsive ordered carbonaceous frameworks (OCFs) are synthesized for the first time. Carbonization of Ni porphyrin monomers having eight polymerizable ethynyl groups yields OCFs with atomically dispersed divalent Ni species and developed micropores. The highest specific surface area (673 m2 g-1) among the OCFs has been achieved. The OCFs thus synthesized comprise non-stacked graphene sheets, affording a unique mechanical flexibility that enables force-driven reversible phase transition.

4.
RSC Adv ; 9(66): 38882-38890, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35540213

RESUMO

Catalytic Rh-based alloy nanoparticles (NPs) with inhomogeneous solid-solution structures were prepared from homogeneous solid-solution alloy NPs. Compared with homogeneous alloy NPs, these inhomogeneous alloy NPs exhibited enhanced catalytic activity and superior catalytic durability. Homogeneous solid-solution alloy NPs consisting of Rh and other immiscible noble metals were synthesized by laser-induced nucleation method in metallic ion solutions. STEM elemental mapping and EDS composition analysis of the particles clearly demonstrated that all the constituents were uniformly dispersed within the NPs. Moreover, the compositions of the alloys were nearly identical to the initial feeding ratios of metallic ions in the mixed solutions, strongly indicating the formation of equimolar solid-solution alloy NPs over the entire composition range. Although the catalytic stability of these Rh-based homogeneous alloy NPs during CO oxidation was improved, their catalytic activity was comparable to that of pure metal catalysts, owing to the uniform local structure at the atomic level. However, the catalytic activity of the alloy NPs was enhanced by heat treatment, which introduced inhomogeneity in the atomic distribution within the NPs. The enhanced activity was due to dissimilar interfaces in the inhomogeneous solid-solution alloy NPs.

5.
Microscopy (Oxf) ; 66(5): 348-355, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016921

RESUMO

We have examined the advanced application of transmission electron microscopy (TEM) for the structural characterization of a composite of cellulose nanofiber (CNF) and palladium (Pd) nanoparticles. In the present study, we focused on electron-irradiation damage and optimization of high-resolution TEM imaging of the composite. The investigation indicates that the CNF breaks even under low-electron-dose conditions at an acceleration voltage of 200 kV. We then applied lower-voltage TEM at 60 kV using a spherical aberration corrector and a monochromator, in order to reduce electron-irradiation damage and improve the spatial resolution. The TEM observation achieved high-resolution imaging and revealed the existence of small Pd nanoparticles, around 2 nm in diameter, supported on the CNF. It is considered that the use of a monochromator in combination with spherical aberration correction contributed to the atomic and nanoscale imaging of the composite, owing to the improvement of the information limit under a lower-acceleration voltage.

6.
Nat Commun ; 8(1): 109, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740078

RESUMO

Despite recent advances in the carbonization of organic crystalline solids like metal-organic frameworks or supramolecular frameworks, it has been challenging to convert crystalline organic solids into ordered carbonaceous frameworks. Herein, we report a route to attaining such ordered frameworks via the carbonization of an organic crystal of a Ni-containing cyclic porphyrin dimer (Ni2-CPDPy). This dimer comprises two Ni-porphyrins linked by two butadiyne (diacetylene) moieties through phenyl groups. The Ni2-CPDPy crystal is thermally converted into a crystalline covalent-organic framework at 581 K and is further converted into ordered carbonaceous frameworks equipped with electrical conductivity by subsequent carbonization at 873-1073 K. In addition, the porphyrin's Ni-N4 unit is also well retained and embedded in the final framework. The resulting ordered carbonaceous frameworks exhibit an intermediate structure, between organic-based frameworks and carbon materials, with advantageous electrocatalysis. This principle enables the chemical molecular-level structural design of three-dimensional carbonaceous frameworks.Carbon-based materials are promising alternatives to noble metal catalysts, but their structures are typically disordered and difficult to control. Here, the authors obtain ordered carbonaceous frameworks with advantageous electrocatalytic properties via the carbonization of nickel-containing porphyrin dimer networks.

7.
Nat Commun ; 7: 10657, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847858

RESUMO

Silicene, a two-dimensional honeycomb network of silicon atoms like graphene, holds great potential as a key material in the next generation of electronics; however, its use in more demanding applications is prevented because of its instability under ambient conditions. Here we report three types of bilayer silicenes that form after treating calcium-intercalated monolayer silicene (CaSi2) with a BF4(-) -based ionic liquid. The bilayer silicenes that are obtained are sandwiched between planar crystals of CaF2 and/or CaSi2, with one of the bilayer silicenes being a new allotrope of silicon, containing four-, five- and six-membered sp(3) silicon rings. The number of unsaturated silicon bonds in the structure is reduced compared with monolayer silicene. Additionally, the bandgap opens to 1.08 eV and is indirect; this is in contrast to monolayer silicene which is a zero-gap semiconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...