Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34360183

RESUMO

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


Assuntos
Big Data , COVID-19 , Inteligência Artificial , Humanos , Saúde Pública , SARS-CoV-2 , Vacinação
2.
Artigo em Inglês | MEDLINE | ID: mdl-34299827

RESUMO

The impact of the still ongoing "Coronavirus Disease 2019" (COVID-19) pandemic has been and is still vast, affecting not only global human health and stretching healthcare facilities, but also profoundly disrupting societal and economic systems worldwide. The nature of the way the virus spreads causes cases to come in further recurring waves. This is due a complex array of biological, societal and environmental factors, including the novel nature of the emerging pathogen. Other parameters explaining the epidemic trend consisting of recurring waves are logistic-organizational challenges in the implementation of the vaccine roll-out, scarcity of doses and human resources, seasonality, meteorological drivers, and community heterogeneity, as well as cycles of strengthening and easing/lifting of the mitigation interventions. Therefore, it is crucial to be able to have an early alert system to identify when another wave of cases is about to occur. The availability of a variety of newly developed indicators allows for the exploration of multi-feature prediction models for case data. Ten indicators were selected as features for our prediction model. The model chosen is a Recurrent Neural Network with Long Short-Term Memory. This paper documents the development of an early alert/detection system that functions by predicting future daily confirmed cases based on a series of features that include mobility and stringency indices, and epidemiological parameters. The model is trained on the intermittent period in between the first and the second wave, in all of the South African provinces.


Assuntos
COVID-19 , Humanos , Memória de Curto Prazo , Redes Neurais de Computação , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...