Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Immunology ; 12(11): e1474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020728

RESUMO

Objectives: Tuberculosis (TB) remains a substantial cause of morbidity and mortality among people living with human immunodeficiency virus (HIV) worldwide. However, the immunological mechanisms associated with the enhanced susceptibility among HIV-positive individuals remain largely unknown. Methods: Here, we used a simian immunodeficiency virus (SIV)/TB-coinfection Mauritian cynomolgus macaque (MCM) model to examine humoral responses from the plasma of SIV-negative (n = 8) and SIV-positive (n = 7) MCM 8-week postinfection with Mycobacterium tuberculosis (Mtb). Results: Antibody responses to Mtb were impaired during SIV coinfection. Elevated inflammatory bulk IgG antibody glycosylation patterns were observed in coinfected macaques early at 8-week post-Mtb infection, including increased agalactosylation (G0) and reduced di-galactosylation (G2), which correlated with endpoint Mtb bacterial burden and gross pathology scores, as well as the time-to-necropsy. Conclusion: These studies suggest that humoral immunity may contribute to control of TB disease and support growing literature that highlights antibody Fc glycosylation as a biomarker of TB disease progression.

2.
Immunol Cell Biol ; 101(10): 975-983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670482

RESUMO

Mucosal antibodies play a key role in protection against breakthrough COVID-19 infections and emerging viral variants. Intramuscular adenovirus-based vaccination (Vaxzevria) only weakly induces nasal IgG and IgA responses, unless vaccinees have been previously infected. However, little is known about how Vaxzevria vaccination impacts the ability of mucosal antibodies to induce Fc responses, particularly against SARS-CoV-2 variants of concern (VoCs). Here, we profiled paired mucosal (saliva, tears) and plasma antibodies from COVID-19 vaccinated only vaccinees (uninfected, vaccinated) and COVID-19 recovered vaccinees (COVID-19 recovered, vaccinated) who both received Vaxzevria vaccines. SARS-CoV-2 ancestral-specific IgG antibodies capable of engaging FcγR3a were significantly higher in the mucosal samples of COVID-19 recovered Vaxzevria vaccinees in comparison with vaccinated only vaccinees. However, when IgG and FcγR3a engaging antibodies were tested against a panel of SARS-CoV-2 VoCs, the responses were ancestral-centric with weaker recognition of Omicron strains observed. In contrast, salivary IgA, but not plasma IgA, from Vaxzevria vaccinees displayed broad cross-reactivity across all SARS-CoV-2 VoCs tested. Our data highlight that while intramuscular Vaxzevria vaccination can enhance mucosal antibodies responses in COVID-19 recovered vaccinees, restrictions by ancestral-centric bias may have implications for COVID-19 protection. However, highly cross-reactive mucosal IgA could be key in addressing these gaps in mucosal immunity and may be an important focus of future SARS-CoV-2 vaccine development.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Formação de Anticorpos , ChAdOx1 nCoV-19 , Vacinação , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunoglobulina A , Imunoglobulina G , Anticorpos Neutralizantes
3.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737263

RESUMO

Understanding mucosal antibody responses from SARS-CoV-2 infection and/or vaccination is crucial to develop strategies for longer term immunity, especially against emerging viral variants. We profiled serial paired mucosal and plasma antibodies from COVID-19 vaccinated only vaccinees (vaccinated, uninfected), COVID-19-recovered vaccinees (recovered, vaccinated), and individuals with breakthrough Delta or Omicron BA.2 infections (vaccinated, infected). Saliva from COVID-19-recovered vaccinees displayed improved antibody-neutralizing activity, Fcγ receptor (FcγR) engagement, and IgA levels compared with COVID-19-uninfected vaccinees. Furthermore, repeated mRNA vaccination boosted SARS-CoV-2-specific IgG2 and IgG4 responses in both mucosa biofluids (saliva and tears) and plasma; however, these rises only negatively correlated with FcγR engagement in plasma. IgG and FcγR engagement, but not IgA, responses to breakthrough COVID-19 variants were dampened and narrowed by increased preexisting vaccine-induced immunity against the ancestral strain. Salivary antibodies delayed initiation following breakthrough COVID-19 infection, especially Omicron BA.2, but rose rapidly thereafter. Importantly, salivary antibody FcγR engagements were enhanced following breakthrough infections. Our data highlight how preexisting immunity shapes mucosal SARS-CoV-2-specific antibody responses and has implications for long-term protection from COVID-19.


Assuntos
COVID-19 , Humanos , Infecções Irruptivas , SARS-CoV-2 , Receptores de IgG , Imunoglobulina G , Anticorpos Antivirais , Mucosa
4.
Med Microbiol Immunol ; 212(4): 291-305, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37477828

RESUMO

Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Vacina BNT162 , Imunoglobulina G , Mutação , Receptores de IgG , SARS-CoV-2/genética
5.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036008

RESUMO

Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.


Assuntos
COVID-19 , Gravidez , Feminino , Humanos , SARS-CoV-2 , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Anticorpos
6.
iScience ; 25(11): 105259, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36213007

RESUMO

The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.

7.
Clin Transl Immunology ; 11(10): e1424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299410

RESUMO

Objectives: Following infection with SARS-CoV-2, virus-specific antibodies are generated, which can both neutralise virions and clear infection via Fc effector functions. The importance of IgG antibodies for protection and control of SARS-CoV-2 has been extensively reported. By comparison, other antibody isotypes including IgA have been poorly characterised. Methods: Here, we characterised plasma IgA from 41 early convalescent COVID-19 subjects for neutralisation and Fc effector functions. Results: Convalescent plasma IgA from > 60% of the cohort had the capacity to inhibit the interaction between wild-type RBD and ACE2. Furthermore, a third of the cohort induced stronger IgA-mediated ACE2 inhibition than matched IgG when tested at equivalent concentrations. Plasma IgA and IgG from this cohort broadly recognised similar RBD epitopes and had similar capacities to inhibit ACE2 from binding to 22 of the 23 prevalent RBD mutations assessed. However, plasma IgA was largely incapable of mediating antibody-dependent phagocytosis in comparison with plasma IgG. Conclusion: Overall, convalescent plasma IgA contributed to the neutralising antibody response of wild-type SARS-CoV-2 RBD and various RBD mutations. However, this response displayed large heterogeneity and was less potent than IgG.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35871459

RESUMO

BACKGROUND: Household studies are crucial for understanding the transmission of SARS-CoV-2 infection, which may be underestimated from PCR testing of respiratory samples alone. We aim to combine the assessment of household mitigation measures; nasopharyngeal, saliva, and stool PCR testing; along with mucosal and systemic SARS-CoV-2-specific antibodies, to comprehensively characterize SARS-CoV-2 infection and transmission in households. METHODS: Between March and September 2020, we obtained samples from 92 participants in 26 households in Melbourne, Australia, in a 4-week period following the onset of infection with ancestral SARS-CoV-2 variants. RESULTS: The secondary attack rate was 36% (24/66) when using nasopharyngeal swab (NPS) PCR positivity alone. However, when respiratory and nonrespiratory samples were combined with antibody responses in blood and saliva, the secondary attack rate was 76% (50/66). SARS-CoV-2 viral load of the index case and household isolation measures were key factors that determine secondary transmission. In 27% (7/26) of households, all family members tested positive by NPS for SARS-CoV-2 and were characterized by lower respiratory Ct values than low transmission families (Median 22.62 vs. 32.91; IQR 17.06-28.67 vs. 30.37-34.24). High transmission families were associated with enhanced plasma antibody responses to multiple SARS-CoV-2 antigens and the presence of neutralizing antibodies. Three distinguishing saliva SARS-CoV-2 antibody features were identified according to age (IgA1 to Spike 1, IgA1 to nucleocapsid protein (NP)), suggesting that adults and children generate distinct mucosal antibody responses during the acute phase of infection. CONCLUSION: Utilizing respiratory and nonrespiratory PCR testing, along with the measurement of SARS-CoV-2-specific local and systemic antibodies, provides a more accurate assessment of infection within households and highlights some of the immunological differences in response between children and adults.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Anticorpos Antivirais , COVID-19/diagnóstico , Criança , Humanos , Imunoglobulina A
9.
Nat Commun ; 13(1): 2774, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589689

RESUMO

Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.


Assuntos
COVID-19 , Anticorpos Antivirais , Humanos , Imunidade , Imunoglobulina G , Imunoglobulina M , Sistema Respiratório , SARS-CoV-2 , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus
10.
Clin Transl Immunology ; 10(11): e1354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754451

RESUMO

OBJECTIVES: SARS-CoV-2 can be transmitted by aerosols, and the ocular surface may be an important route of transmission. Little is known about protective antibody responses to SARS-CoV-2 in tears after infection or vaccination. We analysed the SARS-CoV-2-specific IgG and IgA responses in human tears after either COVID-19 infection or vaccination. METHODS: We measured the antibody responses in 16 subjects with COVID-19 infection for an average of 7 months before, and 15 subjects before and 2 weeks post-Comirnaty (Pfizer-BioNtech) vaccination. Plasma, saliva and basal tears were collected. Eleven pre-pandemic individuals were included as healthy controls. RESULTS: IgG antibodies to spike and nucleoprotein were detected in tears, saliva and plasma from subjects with prior SARS-CoV-2 infection in comparison with uninfected controls. While receptor-binding domain (RBD)-specific antibodies were detected in plasma, minimal RBD-specific antibodies were detected in tears and saliva. By contrast, high levels of IgG antibodies to spike and RBD, but not nucleoprotein, were induced in tears, saliva and plasma of subjects receiving 2 doses of the Comirnaty vaccine. Increased levels of IgA1 and IgA2 antibodies to SARS-CoV-2 antigens were detected in plasma following infection or vaccination but were unchanged in tears and saliva. Comirnaty vaccination induced high neutralising Abs in the plasma, but limited neutralising antibodies were detected in saliva or tears. CONCLUSION: Both infection and vaccination induce SARS-CoV-2-specific IgG antibodies in tears. RBD-specific IgG antibodies in tears were induced by vaccination but were not present 7 months post-infection. This suggests the neutralising antibodies may be low in the tears late following infection.

11.
Cell Rep ; 37(2): 109822, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34610292

RESUMO

Potent neutralizing monoclonal antibodies are one of the few agents currently available to treat COVID-19. SARS-CoV-2 variants of concern (VOCs) that carry multiple mutations in the viral spike protein can exhibit neutralization resistance, potentially affecting the effectiveness of some antibody-based therapeutics. Here, the generation of a diverse panel of 91 human, neutralizing monoclonal antibodies provides an in-depth structural and phenotypic definition of receptor binding domain (RBD) antigenic sites on the viral spike. These RBD antibodies ameliorate SARS-CoV-2 infection in mice and hamster models in a dose-dependent manner and in proportion to in vitro, neutralizing potency. Assessing the effect of mutations in the spike protein on antibody recognition and neutralization highlights both potent single antibodies and stereotypic classes of antibodies that are unaffected by currently circulating VOCs, such as B.1.351 and P.1. These neutralizing monoclonal antibodies and others that bind analogous epitopes represent potentially useful future anti-SARS-CoV-2 therapeutics.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/ultraestrutura , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Cricetinae , Microscopia Crioeletrônica/métodos , Epitopos/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Testes de Neutralização , Ligação Proteica/fisiologia , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
12.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34251356

RESUMO

The SARS-CoV-2 receptor binding domain (RBD) is both the principal target of neutralizing antibodies and one of the most rapidly evolving domains, which can result in the emergence of immune escape mutations, limiting the effectiveness of vaccines and antibody therapeutics. To facilitate surveillance, we developed a rapid, high-throughput, multiplex assay able to assess the inhibitory response of antibodies to 24 RBD natural variants simultaneously. We demonstrate how this assay can be implemented as a rapid surrogate assay for functional cell-based serological methods to measure the SARS-CoV-2 neutralizing capacity of antibodies at the angiotensin-converting enzyme 2-RBD (ACE2-RBD) interface. We describe the enhanced affinity of RBD variants N439K, S477N, Q493L, S494P, and N501Y to the ACE2 receptor and demonstrate the ability of this assay to bridge a major gap for SARS-CoV-2 research, informing selection of complementary monoclonal antibody candidates and the rapid identification of immune escape to emerging RBD variants following vaccination or natural infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Evasão da Resposta Imune , Mutação
13.
Cell Rep Med ; 2(6): 100296, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33997824

RESUMO

The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.


Assuntos
Anticorpos Antivirais/metabolismo , COVID-19/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Anticorpos Antivirais/sangue , Citotoxicidade Celular Dependente de Anticorpos/imunologia , COVID-19/patologia , COVID-19/virologia , Linhagem Celular Tumoral , Dimerização , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Cinética , Testes de Neutralização , Fagocitose , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893175

RESUMO

Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2/imunologia , Anticorpos de Domínio Único , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , COVID-19/imunologia , Camelídeos Americanos , Humanos , Camundongos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...