Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 10(6): 1843-1852, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32276960

RESUMO

FUS is a nucleic acid binding protein that, when mutated, cause a subset of familial amyotrophic lateral sclerosis (ALS). Expression of FUS in yeast recapitulates several pathological features of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, formation of cytoplasmic inclusions, and cytotoxicity. Genetic screens using the yeast model of FUS have identified yeast genes and their corresponding human homologs suppressing FUS induced toxicity in yeast, neurons and animal models. To expand the search for human suppressor genes of FUS induced toxicity, we carried out a genome-scale genetic screen using a newly constructed library containing 13570 human genes cloned in an inducible yeast-expression vector. Through multiple rounds of verification, we found 37 human genes that, when overexpressed, suppress FUS induced toxicity in yeast. Human genes with DNA or RNA binding functions are overrepresented among the identified suppressor genes, supporting that perturbations of RNA metabolism is a key underlying mechanism of FUS toxicity.


Assuntos
Esclerose Lateral Amiotrófica , Proteína FUS de Ligação a RNA , Animais , Citoplasma , Humanos , Corpos de Inclusão , Mutação , Proteína FUS de Ligação a RNA/genética , Saccharomyces cerevisiae/genética
2.
J Vis Exp ; (137)2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-30035772

RESUMO

Budding yeast has been widely used as a model in studying proteins associated with human diseases. Genome-wide genetic screening is a powerful tool commonly used in yeast studies. The expression of a number of neurodegenerative disease-associated proteins in yeast causes cytotoxicity and aggregate formation, recapitulating findings seen in patients with these disorders. Here, we describe a method for screening a yeast model of the Amyotrophic Lateral Sclerosis-associated protein FUS for modifiers of its toxicity. Instead of using transformation, this new screening platform relies on the mating of yeast to introduce an arrayed library of plasmids into the yeast model. The mating method has two clear advantages: first, it is highly efficient; second, the pre-transformed arrayed library of plasmids can be stored for long-term as a glycerol stock, and quickly applied to other screens without the labor-intensive step of transformation into the yeast model each time. We demonstrate how this method can successfully be used to screen for genes that modify the toxicity of FUS.


Assuntos
Biblioteca Gênica , Doenças Neurodegenerativas/diagnóstico , Proteínas/metabolismo , Deficiências na Proteostase/diagnóstico , Saccharomyces cerevisiae/patogenicidade , Humanos
3.
Proc Natl Acad Sci U S A ; 114(20): 5065-5066, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28487485
4.
Chem Commun (Camb) ; 51(25): 5314-7, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25687614

RESUMO

Two tetrahydocarbazolone derivatives were found to show multiple unsolvated crystal forms. A persistent dimer motif was detected in solution by FTIR spectroscopy that is maintained in the kinetic crystal forms. Rationally introduced steric bulk induces the formation of a more stable catemeric form.


Assuntos
Carbazóis/química , Cristalografia por Raios X , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Estrutura Molecular , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
5.
ACS Nano ; 7(4): 3118-29, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23464827

RESUMO

Tumors present numerous biobarriers to the successful delivery of nanoparticles. Decreased blood flow and high interstitial pressure in tumors dictate the degree of resistance to extravasation of nanoparticles. To understand how a nanoparticle can overcome these biobarriers, we developed a multimodal in vivo imaging methodology, which enabled the noninvasive measurement of microvascular parameters and deposition of nanoparticles at the microscopic scale. To monitor the spatiotemporal progression of tumor vasculature and its vascular permeability to nanoparticles at the microcapillary level, we developed a quantitative in vivo imaging method using an iodinated liposomal contrast agent and a micro-CT. Following perfusion CT for quantitative assessment of blood flow, small animal fluorescence molecular tomography was used to image the in vivo fate of cocktails containing liposomes of different sizes labeled with different NIR fluorophores. The animal studies showed that the deposition of liposomes depended on local blood flow. Considering tumor regions of different blood flow, the deposition of liposomes followed a size-dependent pattern. In general, the larger liposomes effectively extravasated in fast flow regions, while smaller liposomes performed better in slow flow regions. We also evaluated whether the tumor retention of nanoparticles is dictated by targeting them to a receptor overexpressed by the cancer cells. Targeting of 100 nm liposomes showed no benefits at any flow rate. However, active targeting of 30 nm liposomes substantially increased their deposition in slow flow tumor regions (∼12-fold increase), which suggested that targeting prevented the washout of the smaller nanoparticles from the tumor interstitium back to blood circulation.


Assuntos
Microvasos/química , Imagem Molecular/métodos , Nanocápsulas/análise , Nanocápsulas/química , Neoplasias Experimentais/química , Tomografia Computadorizada por Raios X/métodos , Animais , Meios de Contraste , Microcirculação , Microscopia de Fluorescência/métodos , Microvasos/diagnóstico por imagem , Microvasos/patologia , Movimento (Física) , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/patologia , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/patologia , Ratos , Técnica de Subtração
6.
ACS Nano ; 6(10): 8783-95, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23005348

RESUMO

While the enhanced permeability and retention effect may promote the preferential accumulation of nanoparticles into well-vascularized primary tumors, it is ineffective in the case of metastases hidden within a large population of normal cells. Due to their small size, high dispersion to organs, and low vascularization, metastatic tumors are less accessible to targeted nanoparticles. To tackle these challenges, we designed a nanoparticle for vascular targeting based on an α(v)ß(3) integrin-targeted nanochain particle composed of four iron oxide nanospheres chemically linked in a linear assembly. The chain-shaped nanoparticles enabled enhanced "sensing" of the tumor-associated remodeling of the vascular bed, offering increased likelihood of specific recognition of metastatic tumors. Compared to spherical nanoparticles, the chain-shaped nanoparticles resulted in superior targeting of α(v)ß(3) integrin due to geometrically enhanced multivalent docking. We performed multimodal in vivo imaging (fluorescence molecular tomography and magnetic resonance imaging) in a non-invasive and quantitative manner, which showed that the nanoparticles targeted metastases in the liver and lungs with high specificity in a highly aggressive breast tumor model in mice.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/secundário , Integrina alfaVbeta3/química , Nanocápsulas , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Meios de Contraste , Feminino , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Nanocápsulas/química
7.
ACS Nano ; 6(5): 4157-68, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22486623

RESUMO

While nanoparticles maximize the amount of chemotherapeutic drug in tumors relative to normal tissues, nanoparticle-based drugs are not accessible to the majority of cancer cells because nanoparticles display patchy, near-perivascular accumulation in tumors. To overcome the limitations of current drugs in their molecular or nanoparticle form, we developed a nanoparticle based on multicomponent nanochains to deliver drug to the majority of cancer cells throughout a tumor while reducing off-target delivery. The nanoparticle is composed of three magnetic nanospheres and one doxorubicin-loaded liposome assembled in a 100 nm long chain. These nanoparticles display prolonged blood circulation and significant intratumoral deposition in tumor models in rodents. Furthermore, the magnetic particles of the chains serve as a mechanical transducer to transfer radio frequency energy to the drug-loaded liposome. The defects on the liposomal walls trigger the release of free drug capable of spreading throughout the entire tumor, which results in a widespread anticancer effect.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Ondas de Rádio , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Humanos , Nanotecnologia , Ratos
8.
Nanotechnology ; 22(11): 115101, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21387846

RESUMO

In the recent past, remarkable advances in nanotechnology have generated nanoparticles of different shapes and sizes, which have been shown to exhibit unique properties suitable for biomedical applications such as cancer therapy and imaging. Obviously, all nanoparticles are not made equal. This becomes evident when we consider their transport behavior under blood flow in microcirculation. In this work, we evaluated the effect of critical physical characteristics such as the particle shape, size and density on a nanoparticle's tendency to marginate towards the vessel walls in microcirculation using an in vitro model. The wall deposition of nanoparticles was tested in a fibronectin-coated microfluidic channel at a physiologically relevant flow rate. Different classes of nanoparticles (liposome, metal particles) of different sizes (60-130 nm), densities (1-19 g ml(-1)) and shapes (sphere, rod) displayed significantly different deposition as a result of different margination rates. The smaller-sized and the oblate-shaped particles displayed a favorable behavior as indicated by their higher margination rates. Notably, the particle density showed an even more essential role, as it was observed that the lighter particles marginated significantly more. Since nanoparticles must escape the flow in order to approach the vascular bed and subsequently extravascular components for meaningful interactions, the design of nanoparticles strongly affects their margination, a key factor for their ultimate in vivo effectiveness.


Assuntos
Lipossomos/química , Técnicas Analíticas Microfluídicas/instrumentação , Nanopartículas/química , Desenho de Equipamento , Microcirculação , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...