Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Inorg Chem ; 60(3): 1780-1789, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33467858

RESUMO

Cyclometalated complexes containing two or more metal centers were recently shown to offer photophysical properties that are advantageous compared to their mononuclear analogues. Here we report the design, synthesis, and luminescent properties of a dinuclear Ir(III) complex formed by a ditopic N^C^N-N^C^N bridging ligand (L1) with pyrimidine as a linking heterocycle. Two dianionic C^N^C terminal ligands were employed to achieve a charge-neutral and nonstereogenic dinuclear complex 5. This complex shows a highly efficient red emission with a maximum at λem = 642 nm as measured for a toluene solution. The decay time and emission quantum yield of the complex measured for the degassed sample are τ = 1.31 µs and ΦPL = 80%, respectively, corresponding to the radiative rate of kr = 6.11·105 s-1. This rate value is approximately fourfold faster than for the green-emitting mononuclear analogue 3. Cryogenic temperature measurements show that the three substrates of the lowest triplet state T1 of 5 emit with decay times of τ(I) = 120 µs, τ(II) = 7 µs, and τ(III) = 1 µs that are much shorter compared to those of the mononuclear complex 3, which has values of τ(I) = 192 µs, τ(II) = 65.6 µs, and τ(III) = 3.6 µs. These data indicate that the spin-orbit coupling of state T1 with the singlet states is much stronger in the case of complex 5, which results in a much higher T1 → S0 emission rate. Indeed, a computational analysis suggests that in the dinuclear complex 5 the T1 state is spin-orbit coupled with twice the number of singlet states compared to that of mononuclear 3, which is a result of the electronic coupling of two coordination sites. The investigation of the temperature dependence of the emission rates of 3 and 5 shows that the room-temperature emission of both complexes is mainly contributed by a thermally populated excited state lying above the T1 state. To the best of our knowledge, complexes 3 and 5 are the first examples of Ir(III) complexes that show photophysical behavior reminiscent of thermally activated delayed fluorescence (TADF).

2.
J Am Chem Soc ; 135(5): 1772-82, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23297679

RESUMO

In order to unravel the intricate interplay between disorder effects, molecular reorganization, and charge carrier localization, a comprehensive study was conducted on hole transport in a series of conjugated alternating phenanthrene indenofluorene copolymers. Each polymer in the series contained one further comonomer comprising monoamines, diamines, or amine-free structures, whose influence on the electronic, optical, and charge transport properties was studied. The series covered a wide range of highest occupied molecular orbital (HOMO) energies as determined by cyclovoltammetry. The mobility, inferred from time-of-flight (ToF) experiments as a function of temperature and electric field, was found to depend exponentially on the HOMO energy. Since possible origins for this effect include energetic disorder, polaronic effects, and wave function localization, the relevant parameters were determined using a range of methods. Disorder and molecular reorganization were established first by an analysis of absorption and emission measurements and second by an analysis of the ToF measurements. In addition, density functional theory calculations were carried out to determine how localized or delocalized holes on a polymer chain are and to compare calculated reorganization energies with those that have been inferred from optical spectra. In summary, we conclude that molecular reorganization has little effect on the hole mobility in this system while both disorder effects and hole localization in systems with low-lying HOMOs are predominant. In particular, as the energetic disorder is comparable for the copolymers, the absolute value of the hole mobility at room temperature is determined by the hole localization associated with the triarylamine moieties.


Assuntos
Polímeros/química , Aminas/química , Fluorenos/química , Indenos/química , Estrutura Molecular , Fenantrenos/química , Polímeros/síntese química , Teoria Quântica
3.
J Chem Phys ; 124(24): 244701, 2006 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-16821990

RESUMO

A series of novel platinum-containing carbazole monomers and polymers was synthesized and fully characterized by UV-VIS absorption, luminescence, and photoinduced absorption studies. In these compounds, a carbazole unit is incorporated into the main chain via either a para- or a meta-linkage. We discuss the effects of linkage and polymerization on the energy levels of S1, T1, and Tn. The S1-T1 splitting observed for the meta-linked monomer (0.4 eV) is only half of that in the para-linked monomer (0.8 eV). Upon polymerization, the exchange energy in the para-linked compound reduces, yet still remains larger than in the meta-linked polymer. We attribute the difference in exchange energy to the difference in wave function overlap between electron and hole in these compounds.

4.
J Phys Chem B ; 110(15): 7653-9, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16610856

RESUMO

A concept for highly ordered solid-state structures with bright fluorescence is proposed: liquid crystals based on tetraethynylpyrene chromophores, where the rigid core is functionalized with flexible, promesogenic alkoxy chains. The synthesis of this novel material is presented. The thermotropic properties are studied by means of differential scanning calorimetry (DSC), cross-polarized optical microscopy (POM), and X-ray diffraction. The mesogen possesses an enantiotropic Col(h) phase over a large temperature range before clearing. The material is highly fluorescent in solution and, most remarkably, in the condensed state, with a broad, strongly red shifted emission. Fluorescence quantum yields (Phi(F)) have been determined to be 70% in dichloromethane solution and 62% in the solid state. Concentration- and temperature-dependent absorption and emission studies as well as quantum-chemical calculations on isolated molecules and dimers are used to clarify the type of intermolecular interactions present as well as their influence on the fluorescence quantum yield and spectral properties of the material. The high luminescence efficiency in the solid state is ascribed to rotated chromophores, leading to an optically allowed lowest optical transition.

5.
Chem Commun (Camb) ; (37): 4708-10, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16175300

RESUMO

The photo- and electroluminescence properties of a series of novel, heteroleptic, mer-cyclometallated iridium complexes have been fine-tuned from green to blue by changing the substituents on the pyridyl ring of the phenylpyridyl ligand. The X-ray crystal structures of two Ir-based triazolyl complexes are reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...