Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 1306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670232

RESUMO

Cucumber fermentations are one of the most important vegetable fermentations in the United States. The fermentation is usually driven by lactic acid bacteria (LAB) indigenous to fresh cucumbers. But LAB are greatly outnumbered by many Gram-negative bacteria on fresh cucumbers, which may influence the growth of LAB and the incidence of bloater defect (hollow cavities formed inside fermented cucumbers) leading to serious economic loss to the pickle industry. Rapid elimination of Gram-negative bacteria is crucial to the dominance of LAB and the reduction of bloater defect in the fermentation. Various factors can affect the viability of Gram-negative bacteria in cucumber fermentation. Bacteriophages (phages) may be one of such factors. This study explored the abundance, diversity, and functional role of phages infecting Gram-negative bacteria in a commercial cucumber fermentation. Cover brine samples were taken from a commercial fermentation tank over a 30-day period. On day 1 and day 3 of the fermentation, 39 Gram-negative bacteria and 26 independent phages were isolated. Nearly 67% of Gram-negative bacterial isolates were susceptible to phage infection. Phage hosts include Enterobacter, Citrobacter, Escherichia, Pantoea, Serratia, Leclercia, Providencia, and Pseudomonas species. About 88% of the isolated phages infected the members in the family Enterobacteriaceae and 58% of phages infected Enterobacter species. Eight phages with unique host ranges were characterized. These phages belong to the Myoviridae, Siphoviridae, or Podoviridae family and showed distinct protein profiles and DNA fingerprints. The infectivity of a phage against Enterobacter cancerogenus was evaluated in cucumber juice as a model system. The phage infection at the multiplicity of infection 1 or 100 resulted in a 5-log reduction in cell concentration within 3 h and rapidly eliminated its host. This study revealed the abundance and variety of phages infecting Gram-negative bacteria, particularly Enterobacteriaceae, in the commercial cucumber fermentation, suggesting that phages may play an important role in the elimination of Gram-negative bacteria, thereby facilitating the dominance of LAB and minimizing bloater defect. To our knowledge, this is the first report on the ecology of phages infecting Gram-negative bacteria in commercial cucumber fermentations.

2.
Food Microbiol ; 77: 10-20, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30297040

RESUMO

Limited documentation of the cucumber fermentation microbiome has impeded the understanding of the role of microbes on the quality of finished products. We characterized the microbiome of fresh and fermented cucumber samples using culture dependent and independent techniques, with an emphasis on the non-lactic acid bacteria (non-LAB) population. Insubstantial microbiome variations were observed among fresh cucumber types with Rhizobium (31.04%), Pseudomonas (14.08%), Pantoea (9.25%), Stenotrophomonas (6.83%), and Acinetobacter (6.5%) prevailing. The relative abundance of LAB remained below 0.4% and 4.0% on fresh cucumbers and day 3 of the fermentations brined with 6% sodium chloride, respectively. Fermentation cover brine samples collected on day 1 harbored Pseudomonas, Pantoea, Stenotrophomonas, Acinetobacter, Comamonas, Wautersiella, Microbacterium, Flavobacterium, Ochrobactrum and the Enterobacteriaceae, Citrobacter, Enterobacter and Kluyvera. Plate counts for presumptive Klebsiella and Pseudomonas from fermentation cover brine samples reached 2.80 ±â€¯0.36 and 2.78 ±â€¯0.83 log of CFU/mL, respectively, in 30% and 60% of the nine tanks scrutinized with selective media. Both genera were found in cover brine samples with pH values at 4.04 ±â€¯0.15. We aim at elucidating whether the low relative abundance of non-LAB in commercial cucumber fermentations, in particular Pseudomonas and Enterobacteriaceae, impacts the quality of fermented cucumbers.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Cucumis sativus/microbiologia , Alimentos Fermentados/microbiologia , Microbiologia de Alimentos , Microbiota , Cloreto de Sódio/metabolismo , Bactérias/genética , DNA Bacteriano , Fermentação , Concentração de Íons de Hidrogênio , Oxigênio/análise , RNA Ribossômico 16S/genética , Sais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...