Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 130(6): 817-828, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28576878

RESUMO

Several CGHC motif-containing disulfide isomerases support thrombosis. We here report that endoplasmic reticulum protein 72 (ERp72), with 3 CGHC redox-active sites (ao, a, and a'), supports thrombosis. We generated a new conditional knockout mouse model and found that Tie2-Cre/ERp72fl/fl mice with blood and endothelial cells lacking ERp72 had prolonged tail bleeding times and decreased platelet accumulation in laser-induced cremaster arteriole injury and FeCl3-induced mesenteric arterial injury. Fibrin deposition was decreased in the laser injury model. Both platelet and fibrin accumulation defects were fully rescued by infusion of recombinant ERp72 containing functional a and a' CGHC motifs (ERp72(oo-ss-ss)). Infusion of ERp72 containing inactivated a and a' CGHC motifs (ERp72(ss-oo-oo)) inhibited platelet accumulation and fibrin deposition in wild-type mice. Infusion of ERp72(oo-ss-ss) into ß3-null mice increased fibrin deposition in the absence of platelets. ERp72-null platelets had defective aggregation, JON/A binding, P-selectin expression, and adenosine triphosphate (ATP) secretion. The aggregation and ATP secretion defects were fully rescued by ERp72(oo-ss-ss) but partially rescued by ERp72(ss-oo-ss) and ERp72(ss-ss-oo). Aggregation and ATP secretion of human platelets was potentiated by ERp72(oo-ss-ss) but inhibited by ERp72(ss-oo-ss) and ERp72(ss-ss-oo). These data suggest that both the a and a' active sites are required for platelet function. ERp72 bound poorly to ß3-null mouse platelets, and the addition of ERp72(oo-ss-ss) to human platelets generated thiols in αIIbß3, suggesting a direct interaction of ERp72 with αIIbß3. Defective aggregation of ERp72-null platelets was recovered by ERp72, but not other thiol isomerases. In summary, ERp72 plays a critical role in platelet function and coagulation through the a and a' CGHC motifs.


Assuntos
Plaquetas/metabolismo , Glicoproteínas de Membrana/metabolismo , Trombose/metabolismo , Animais , Plaquetas/patologia , Humanos , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Ativação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose/genética , Trombose/patologia
2.
Transfusion ; 56(7): 1775-85, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27040023

RESUMO

BACKGROUND: Acquired thrombotic thrombocytopenic purpura (TTP) is a potentially fatal disease in which ultralarge von Willebrand factor (UL-VWF) multimers accumulate as a result of autoantibody inhibition of the VWF protease, ADAMTS13. Current treatment is not specifically directed at the responsible autoantibodies and in some cases is ineffective or of transient benefit. More rational, reliable, and durable therapies are needed, and a human autoantibody-mediated animal model would be useful for their development. Previously, TTP patient anti-ADAMTS13 single-chain variable-region fragments (scFv's) were cloned that inhibited ADAMTS13 proteolytic activity in vitro and expressed features in common with inhibitory immunoglobulin G in patient plasma. Here, pathogenicity of these scFv's is explored in vivo by transfecting mice with inhibitory antibody cDNA. STUDY DESIGN AND METHODS: Hydrodynamic tail vein injection of naked DNA encoding human anti-ADAMTS13 scFv was used to create sustained ADAMTS13 inhibition in mice. Accumulation of UL-VWF multimers was measured and formation of platelet (PLT) thrombi after focal or systemic vascular injury was examined. RESULTS: Transfected mice expressed physiological plasma levels of human scFv and developed sustained ADAMTS13 inhibition and accumulation of unprocessed UL-VWF multimers. Induced focal endothelial injury generated PLT thrombi extending well beyond the site of initial injury, and systemic endothelial injury induced thrombocytopenia, schistocyte formation, PLT thrombi, and death. CONCLUSIONS: These results demonstrate for the first time the ability of human recombinant monovalent anti-ADAMTS13 antibody fragments to recapitulate key pathologic features of untreated acquired TTP in vivo, validating their clinical significance and providing an animal model for testing novel targeted therapeutic approaches.


Assuntos
Proteína ADAMTS13/antagonistas & inibidores , Autoanticorpos , Púrpura Trombocitopênica Trombótica/imunologia , Púrpura Trombocitopênica Trombótica/terapia , Proteína ADAMTS13/imunologia , Animais , Autoanticorpos/genética , Clonagem Molecular , DNA Complementar/administração & dosagem , Humanos , Camundongos , Modelos Animais , Terapia de Alvo Molecular/métodos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/toxicidade , Fator de von Willebrand/metabolismo
3.
J Clin Invest ; 125(12): 4391-406, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26529254

RESUMO

Protein disulfide isomerase (PDI) has two distinct CGHC redox-active sites; however, the contribution of these sites during different physiologic reactions, including thrombosis, is unknown. Here, we evaluated the role of PDI and redox-active sites of PDI in thrombosis by generating mice with blood cells and vessel wall cells lacking PDI (Mx1-Cre Pdifl/fl mice) and transgenic mice harboring PDI that lacks a functional C-terminal CGHC motif [PDI(ss-oo) mice]. Both mouse models showed decreased fibrin deposition and platelet accumulation in laser-induced cremaster arteriole injury, and PDI(ss-oo) mice had attenuated platelet accumulation in FeCl3-induced mesenteric arterial injury. These defects were rescued by infusion of recombinant PDI containing only a functional C-terminal CGHC motif [PDI(oo-ss)]. PDI infusion restored fibrin formation, but not platelet accumulation, in eptifibatide-treated wild-type mice, suggesting a direct role of PDI in coagulation. In vitro aggregation of platelets from PDI(ss-oo) mice and PDI-null platelets was reduced; however, this defect was rescued by recombinant PDI(oo-ss). In human platelets, recombinant PDI(ss-oo) inhibited aggregation, while recombinant PDI(oo-ss) potentiated aggregation. Platelet secretion assays demonstrated that the C-terminal CGHC motif of PDI is important for P-selectin expression and ATP secretion through a non-αIIbß3 substrate. In summary, our results indicate that the C-terminal CGHC motif of PDI is important for platelet function and coagulation.


Assuntos
Coagulação Sanguínea , Plaquetas/enzimologia , Agregação Plaquetária , Isomerases de Dissulfetos de Proteínas/metabolismo , Trombose/enzimologia , Motivos de Aminoácidos , Animais , Plaquetas/patologia , Cloretos/farmacologia , Fibrina/genética , Fibrina/metabolismo , Humanos , Compostos de Ferro/farmacologia , Camundongos , Camundongos Transgênicos , Selectina-P/genética , Selectina-P/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Estrutura Terciária de Proteína , Trombose/genética , Trombose/patologia
4.
Blood ; 116(23): 5021-31, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-20724543

RESUMO

Heparin-induced thrombocytopenia (HIT) is a life- and limb-threatening thrombotic disorder that develops after exposure to heparin, often in the setting of inflammation. We have shown previously that HIT is associated with antibodies to complexes that form between platelet factor 4 and glycosaminoglycan (GAG) side chains on the surface of platelets. However, thrombosis can occur in the absence of thrombocytopenia. We now show that platelet factor 4 binds to monocytes and forms antigenic complexes with their surface GAG side chains more efficiently than on platelets likely due to differences in GAG composition. Binding to monocytes is enhanced when the cells are activated by endotoxin. Monocyte accumulation within developing arteriolar thrombi was visualized by situ microscopy. Monocyte depletion or inactivation in vivo attenuates thrombus formation induced by photochemical injury of the carotid artery in a modified murine model of HIT while paradoxically exacerbating thrombocytopenia. These studies demonstrate a previously unappreciated role for monocytes in the pathogenesis of arterial thrombosis in HIT and suggest that therapies targeting these cells might provide an alternative approach to help limit thrombosis in this and possibly other thrombotic disorders that occur in the setting of inflammation.


Assuntos
Autoantígenos/imunologia , Monócitos/imunologia , Fator Plaquetário 4/imunologia , Trombocitopenia/imunologia , Animais , Anticoagulantes/efeitos adversos , Autoanticorpos/imunologia , Glicosaminoglicanos/imunologia , Glicosaminoglicanos/metabolismo , Heparina/efeitos adversos , Humanos , Camundongos , Camundongos Transgênicos , Monócitos/metabolismo , Fator Plaquetário 4/metabolismo , Ligação Proteica , Trombocitopenia/induzido quimicamente , Trombocitopenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...