Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 11(10): 9846-9853, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28956912

RESUMO

Functionalization of colloidal quantum dots (QDs) with chiral cysteine derivatives by phase-transfer ligand exchange proved to be a simple yet powerful method for the synthesis of chiral, optically active QDs regardless of their size and chemical composition. Here, we present induction of chirality in CdSe by thiol-free chiral carboxylic acid capping ligands (l- and d-malic and tartaric acids). Our circular dichroism (CD) and infrared experimental data showed how the presence of a chiral carboxylic acid capping ligand on the surface of CdSe QDs was necessary but not sufficient for the induction of optical activity in QDs. A chiral bis-carboxylic acid capping ligand needed to have three oxygen-donor groups during the phase-transfer ligand exchange to successfully induce chirality in CdSe. Intrinsic chirality of CdSe nanocrystals was not observed as evidenced by transmission electron microscopy and reverse phase-transfer ligand exchange with achiral 1-dodecanethiol. Density functional theory geometry optimizations and CD spectra simulations suggest an explanation for these observations. The tridentate binding via three oxygen-donor groups had an energetic preference for one of the two possible binding orientations on the QD (111) surface, leading to the CD signal. By contrast, bidentate binding was nearly equienergetic, leading to cancellation of approximately oppositely signed corresponding CD signals. The resulting induced CD of CdSe functionalized with chiral carboxylic acid capping ligands was the result of hybridization of the (achiral) QD and (chiral) ligand electronic states controlled by the ligand's absolute configuration and the ligand's geometrical arrangement on the QD surface.

2.
ACS Nano ; 10(3): 3809-15, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26938741

RESUMO

L-cysteine derivatives induce and modulate the optical activity of achiral cadmium selenide (CdSe) and cadmium sulfide (CdS) quantum dots (QDs). Remarkably, N-acetyl-L-cysteine-CdSe and L-homocysteine-CdSe as well as N-acetyl-L-cysteine-CdS and L-cysteine-CdS showed "mirror-image" circular dichroism (CD) spectra regardless of the diameter of the QDs. This is an example of the inversion of the CD signal of QDs by alteration of the ligand's structure, rather than inversion of the ligand's absolute configuration. Non-empirical quantum chemical simulations of the CD spectra were able to reproduce the experimentally observed sign patterns and demonstrate that the inversion of chirality originated from different binding arrangements of N-acetyl-L-cysteine and L-homocysteine-CdSe to the QD surface. These efforts may allow the prediction of the ligand-induced chiroptical activity of QDs by calculating the specific binding modes of the chiral capping ligands. Combined with the large pool of available chiral ligands, our work opens a robust approach to the rational design of chiral semiconducting nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...