Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7168, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532056

RESUMO

Chemical pesticide delivery is a fundamental aspect of agriculture. However, the extensive use of pesticides severely endangers the ecosystem because they accumulate on crops, in soil, as well as in drinking and groundwater. New frontiers in nano-engineering have opened the door for precision agriculture. We introduced Tobacco mild green mosaic virus (TMGMV) as a viable delivery platform with a high aspect ratio and favorable soil mobility. In this work, we assess the use of TMGMV as a chemical nanocarrier for agriculturally relevant cargo. While plant viruses are usually portrayed as rigid/solid structures, these are "dynamic materials," and they "breathe" in solution in response to careful adjustment of pH or bathing media [e.g., addition of solvent such as dimethyl sulfoxide (DMSO)]. Through this process, coat proteins (CPs) partially dissociate leading to swelling of the nucleoprotein complexes-allowing for the infusion of active ingredients (AI), such as pesticides [e.g., fluopyram (FLP), clothianidin (CTD), rifampicin (RIF), and ivermectin (IVM)] into the macromolecular structure. We developed a "breathing" method that facilitates inter-coat protein cargo loading, resulting in up to ~ 1000 AIs per virion. This is of significance since in the agricultural setting, there is a need to develop nanoparticle delivery strategies where the AI is not chemically altered, consequently avoiding the need for regulatory and registration processes of new compounds. This work highlights the potential of TMGMV as a pesticide nanocarrier in precision farming applications; the developed methods likely would be applicable to other protein-based nanoparticle systems.


Assuntos
Praguicidas , Vírus do Mosaico do Tabaco , Tobamovirus , Ecossistema , Praguicidas/metabolismo , Solo , Vírion
2.
Nano Lett ; 23(12): 5785-5793, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327572

RESUMO

Spherical nanoparticles (SNPs) from tobacco mild green mosaic virus (TMGMV) were developed and characterized, and their application for agrochemical delivery was demonstrated. Specifically, we set out to develop a platform for pesticide delivery targeting nematodes in the rhizosphere. SNPs were obtained by thermal shape-switching of the TMGMV. We demonstrated that cargo can be loaded into the SNPs during thermal shape-switching, enabling the one-pot synthesis of functionalized nanocarriers. Cyanine 5 and ivermectin were encapsulated into SNPs to achieve 10% mass loading. SNPs demonstrated good mobility and soil retention slightly higher than that of TMGMV rods. Ivermectin delivery to Caenorhabditis elegans using SNPs was determined after passing the formulations through soil. Using a gel burrowing assay, we demonstrate the potent efficacy of SNP-delivered ivermectin against nematodes. Like many pesticides, free ivermectin is adsorbed in the soil and did not show efficacy. The SNP nanotechnology offers good soil mobility and a platform technology for pesticide delivery to the rhizosphere.


Assuntos
Nanopartículas , Praguicidas , Vírus do Mosaico do Tabaco , Animais , Vírus do Mosaico do Tabaco/química , Ivermectina/farmacologia , Nanopartículas/química , Praguicidas/farmacologia , Caenorhabditis elegans , Solo
3.
Angew Chem Int Ed Engl ; 59(46): 20343-20347, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32602988

RESUMO

Demand for energy-efficient gas separations exists across many industrial processes, and membranes can aid in meeting this demand. Carbon molecular sieve (CMS) membranes show exceptional separation performance and scalable processing attributes attractive for important, similar-sized gas pairs. Herein, we outline a mathematical and physical framework to understand these attributes. This framework shares features with dual-mode transport theory for glassy polymers; however, physical connections to CMS model parameters differ from glassy polymer cases. We present evidence in CMS membranes for a large volume fraction of microporous domains characterized by Langmuir sorption in local equilibrium with a minority continuous phase described by Henry's law sorption. Using this framework, expressions are provided to relate measurable parameters for sorption and transport in CMS materials. We also outline a mechanism for formation of these environments and suggest future model refinements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...