Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2402045121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683998

RESUMO

Phytophagous insects have evolved sophisticated detoxification systems to overcome the antiherbivore chemical defenses produced by many plants. However, how these biotransformation systems differ in generalist and specialist insect species and their role in determining insect host plant range remains an open question. Here, we show that UDP-glucosyltransferases (UGTs) play a key role in determining the host range of insect species within the Spodoptera genus. Comparative genomic analyses of Spodoptera species that differ in host plant breadth identified a relatively conserved number of UGT genes in generalist species but high levels of UGT gene pseudogenization in the specialist Spodoptera picta. CRISPR-Cas9 knockouts of the three main UGT gene clusters of Spodoptera frugiperda revealed that UGT33 genes play an important role in allowing this species to utilize the poaceous plants maize, wheat, and rice, while UGT40 genes facilitate utilization of cotton. Further functional analyses in vivo and in vitro identified the UGT SfUGT33F32 as the key mechanism that allows generalist S. frugiperda to detoxify the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), a potent insecticidal phytotoxin produced by poaceous plants. However, while this detoxification capacity is conserved in several generalist Spodoptera species, Spodoptera picta, which specializes on Crinum plants, is unable to detoxify DIMBOA due to a nonfunctionalizing mutation in SpUGT33F34. Collectively, these findings provide insight into the role of insect UGTs in host plant adaptation, the mechanistic basis of evolutionary transitions between generalism and specialism and offer molecular targets for controlling a group of notorious insect pests.


Assuntos
Spodoptera , Animais , Spodoptera/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Especificidade de Hospedeiro/genética , Difosfato de Uridina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia
2.
Evol Appl ; 17(1): e13625, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38283601

RESUMO

Recent work has demonstrated that many bee species have specific cytochrome P450 enzymes (P450s) that can efficiently detoxify certain insecticides. The presence of these P450s, belonging or closely related to the CYP9Q subfamily (CYP9Q-related), is generally well conserved across the diversity of bees. However, the alfalfa leafcutter bee, Megachile rotundata, lacks CYP9Q-related P450s and is 170-2500 times more sensitive to certain insecticides than bee pollinators with these P450s. The extent to which these findings apply to other Megachilidae bee species remains uncertain. To address this knowledge gap, we sequenced the transcriptomes of four Megachile species and leveraged the data obtained, in combination with publicly available genomic data, to investigate the evolution and function of P450s in the Megachilidae. Our analyses reveal that several Megachilidae species, belonging to the Lithurgini, Megachilini and Anthidini tribes, including all species of the Megachile genus investigated, lack CYP9Q-related genes. In place of these genes Megachile species have evolved phylogenetically distinct CYP9 genes, the CYP9DM lineage. Functional expression of these P450s from M. rotundata reveal they lack the capacity to metabolize the neonicotinoid insecticides thiacloprid and imidacloprid. In contrast, species from the Osmiini and Dioxyini tribes of Megachilidae have CYP9Q-related P450s belonging to the CYP9BU subfamily that are able to detoxify thiacloprid. These findings provide new insight into the evolution of P450s that act as key determinants of insecticide sensitivity in bees and have important applied implications for pesticide risk assessment.

3.
Pestic Biochem Physiol ; 198: 105743, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225086

RESUMO

The alkaloid, nicotine, produced by tobacco and other Solanaceae as an anti-herbivore defence chemical is one of the most toxic natural insecticides in nature. However, some insects, such as the whitefly species, Trialeurodes vaporariorum and Bemisia tabaci show strong tolerance to this allelochemical and can utilise tobacco as a host. Here, we used biological, molecular and functional approaches to investigate the role of cytochrome P450 enzymes in nicotine tolerance in T. vaporariorum and B. tabaci. Insecticide bioassays revealed that feeding on tobacco resulted in strong induced tolerance to nicotine in both species. Transcriptome profiling of both species reared on tobacco and bean hosts revealed profound differences in the transcriptional response these host plants. Interrogation of the expression of P450 genes in the host-adapted lines revealed that P450 genes belonging to the CYP6DP subfamily are strongly upregulated in lines reared on tobacco. Functional characterisation of these P450s revealed that CYP6DP1 and CYP6DP2 of T. vaporariorum and CYP6DP3 of B. tabaci confer resistance to nicotine in vivo. These three genes, in addition to the B. tabaci P450 CYP6DP5, were also found to confer resistance to the neonicotinoid imidacloprid. Our data provide new insight into the molecular basis of nicotine resistance in insects and illustrates how divergence in the evolution of P450 genes in this subfamily in whiteflies may have impacted the extent to which different species can tolerate a potent natural insecticide.


Assuntos
Hemípteros , Inseticidas , Animais , Nicotina/farmacologia , Nicotina/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Resistência a Inseticidas/genética , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Nicotiana/genética , Hemípteros/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo
4.
Sci Total Environ ; 915: 170174, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38246392

RESUMO

Bees carry out vital ecosystem services by pollinating both wild and economically important crop plants. However, while performing this function, bee pollinators may encounter potentially harmful xenobiotics in the environment such as pesticides (fungicides, herbicides and insecticides). Understanding the key factors that influence the toxicological outcomes of bee exposure to these chemicals, in isolation or combination, is essential to safeguard their health and the ecosystem services they provide. In this regard, recent work using toxicogenomic and phylogenetic approaches has begun to identify, at the molecular level, key determinants of pesticide sensitivity in bee pollinators. These include detoxification systems that convert pesticides to less toxic forms and key residues in insecticide target-sites that underlie species-specific insecticide selectivity. Here we review this emerging body of research and summarise the state of knowledge of the molecular determinants of pesticide sensitivity in bee pollinators. We identify gaps in our knowledge for future research and examine how an understanding of the genetic basis of bee sensitivity to pesticides can be leveraged to, a) predict and avoid negative bee-pesticide interactions and facilitate the future development of pest-selective bee-safe insecticides, and b) inform traditional effect assessment approaches in bee pesticide risk assessment and address issues of ecotoxicological concern.


Assuntos
Fungicidas Industriais , Inseticidas , Praguicidas , Abelhas , Animais , Praguicidas/análise , Inseticidas/análise , Filogenia , Ecossistema , Fungicidas Industriais/análise
5.
JAMA Netw Open ; 6(12): e2346545, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060226

RESUMO

Importance: Pediatric ventilator-associated events (PedVAEs, defined as a sustained worsening in oxygenation after a baseline period of stability or improvement) are useful for surveillance of complications from mechanical ventilation. It is unclear whether interventions to mitigate known risk factors can reduce PedVAE rates. Objective: To assess whether adherence to 1 or more test factors in a quality improvement bundle was associated with a reduction in PedVAE rates. Design, Setting, and Participants: This multicenter quality improvement study obtained data from 2017 to 2020 for patients who were mechanically ventilated and cared for in neonatal, pediatric, and cardiac intensive care units (ICUs). These ICUs were located in 95 hospitals participating in the Children's Hospitals' Solutions for Patient Safety (SPS) network in North America. Data analyses were performed between September 2021 and April 2023. Intervention: A quality improvement bundle consisted of 3 test factors: multidisciplinary apparent cause analysis, daily discussion of extubation readiness, and daily discussion of fluid balance goals. This bundle was distributed to a subgroup of hospitals that volunteered to participate in a collaborative PedVAE prevention initiative under the SPS network guidance in July 2018. Main Outcomes and Measures: Each SPS network hospital submitted monthly PedVAE rates from January 1, 2017, to May 31, 2020, and test factor data were submitted from July 1, 2018, to May 31, 2020. Analyses focused on hospitals that reliably submitted PedVAE rate data, defined as outcomes data submission through May 31, 2020, for at least 80% of the baseline and postbaseline periods. Results: Of the 95 hospitals in the SPS network that reported PedVAE data, 21 were grouped in the Pioneer cohort and 74 in the non-Pioneer cohort. Only 12 hospitals (57%) from the 21 Pioneer hospitals and 33 (45%) from the 74 non-Pioneer hospitals were considered to be reliable reporters of outcome data. Among the 12 hospitals, the PedVAE rate decreased from 1.9 to 1.4 events per 1000 ventilator days (absolute rate difference, -0.6; 95% CI, -0.5 to -0.7; P < .001). No significant change in the PedVAE rate was seen among the 33 hospitals that reliably submitted PedVAE rates but did not implement the bundle. Of the 12 hospitals, 3 that reliably performed daily discussion of extubation readiness had a decrease in PedVAE rate from 2.6 to 1.2 events per 1000 ventilator days (absolute rate difference, -1.4; 95% CI, -1.0 to -1.7; P < .001), whereas the other 9 hospitals that did not implement this discussion did not have a decrease. Conclusions and Relevance: This study found that a multicenter quality improvement intervention targeting PedVAE risk factors was associated with a substantial reduction in the rate of PedVAEs in hospital ICUs. The findings suggest that ICU teams seeking to reduce PedVAEs incorporate daily discussion of extubation readiness during morning rounds.


Assuntos
Melhoria de Qualidade , Respiração Artificial , Recém-Nascido , Humanos , Criança , Respiração Artificial/efeitos adversos , Unidades de Terapia Intensiva , Ventiladores Mecânicos , Hospitais Pediátricos
6.
Insect Biochem Mol Biol ; 159: 103983, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380137

RESUMO

The tomato leafminer, Tuta absoluta, is an invasive crop pest that has evolved resistance to many of the insecticides used for its control. To facilitate the investigation of the underpinning mechanisms of resistance in this species we generated a contiguous genome assembly using long-read sequencing data. We leveraged this genomic resource to investigate the genetic basis of resistance to the diamide insecticide chlorantraniliprole in Spanish strains of T. absoluta that exhibit high levels of resistance to this insecticide. Transcriptomic analyses revealed that, in these strains, resistance is not associated with previously reported target-site mutations in the diamide target-site, the ryanodine receptor, but rather is associated with the marked overexpression (20- to >100-fold) of a gene encoding a UDP-glycosyltransferase (UGT). Functional expression of this UGT, UGT34A23, via ectopic expression in Drosophila melanogaster demonstrated that it confers strong and significant resistance in vivo. The genomic resources generated in this study provide a powerful resource for further research on T. absoluta. Our findings on the mechanisms underpinning resistance to chlorantraniliprole will inform the development of sustainable management strategies for this important pest.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Solanum lycopersicum , Animais , Inseticidas/farmacologia , Diamida , Resistência a Inseticidas/genética , Drosophila melanogaster , Difosfato de Uridina
7.
Sci Adv ; 9(15): eadg0885, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37043574

RESUMO

Many plants produce chemical defense compounds as protection against antagonistic herbivores. However, how beneficial insects such as pollinators deal with the presence of these potentially toxic chemicals in nectar and pollen is poorly understood. Here, we characterize a conserved mechanism of plant secondary metabolite detoxification in the Hymenoptera, an order that contains numerous highly beneficial insects. Using phylogenetic and functional approaches, we show that the CYP336 family of cytochrome P450 enzymes detoxifies alkaloids, a group of potent natural insecticides, in honeybees and other hymenopteran species that diverged over 281 million years. We linked this function to an aspartic acid residue within the main access channel of CYP336 enzymes that is highly conserved within this P450 family. Together, these results provide detailed insights into the evolution of P450s as a key component of detoxification systems in hymenopteran species and reveal the molecular basis of adaptations arising from interactions between plants and beneficial insects.


Assuntos
Alcaloides , Néctar de Plantas , Abelhas , Animais , Néctar de Plantas/química , Filogenia , Insetos , Sistema Enzimático do Citocromo P-450/genética
8.
Insect Biochem Mol Biol ; 156: 103934, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990247

RESUMO

The tobacco whitefly, Bemisia tabaci, is a polyphagous crop pest which causes high levels of economic damage across the globe. Insecticides are often required for the effective control of this species, among which the neonicotinoid class have been particularly widely used. Deciphering the mechanisms responsible for resistance to these chemicals is therefore critical to maintain control of B. tabaci and limit the damage it causes. An important mechanism of resistance to neonicotinoids in B. tabaci is the overexpression of the cytochrome P450 gene CYP6CM1 which leads to the enhanced detoxification of several neonicotinoids. In this study we show that qualitative changes in this P450 dramatically alter its metabolic capacity to detoxify neonicotinoids. CYP6CM1 was significantly over-expressed in two strains of B. tabaci which displayed differing levels of resistance to the neonicotinoids imidacloprid and thiamethoxam. Sequencing of the CYP6CM1 coding sequence from these strains revealed four different alleles encoding isoforms carrying several amino acid changes. Expression of these alleles in vitro and in vivo provided compelling evidence that a mutation (A387G), present in two of the CYP6CM1 alleles, results in enhanced resistance to several neonicotinoids. These data demonstrate the importance of both qualitative and quantitative changes in genes encoding detoxification enzymes in the evolution of insecticide resistance and have applied implications for resistance monitoring programs.


Assuntos
Hemípteros , Inseticidas , Animais , Mutação Puntual , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Resistência a Inseticidas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hemípteros/genética , Hemípteros/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(26): e2205850119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733268

RESUMO

The regulatory process for assessing the risks of pesticides to bees relies heavily on the use of the honeybee, Apis mellifera, as a model for other bee species. However, the validity of using A. mellifera as a surrogate for other Apis and non-Apis bees in pesticide risk assessment has been questioned. Related to this line of research, recent work on A. mellifera has shown that specific P450 enzymes belonging to the CYP9Q subfamily act as critically important determinants of insecticide sensitivity in this species by efficiently detoxifying certain insecticide chemotypes. However, the extent to which the presence of functional orthologs of these enzymes is conserved across the diversity of bees is unclear. Here we used a phylogenomic approach to identify > 100 putative CYP9Q functional orthologs across 75 bee species encompassing all major bee families. Functional analysis of 26 P450s from 20 representative bee species revealed that P450-mediated detoxification of certain systemic insecticides, including the neonicotinoid thiacloprid and the butenolide flupyradifurone, is conserved across all major bee pollinator families. However, our analyses also reveal that CYP9Q-related genes are not universal to all bee species, with some Megachilidae species lacking such genes. Thus, our results reveal an evolutionary conserved capacity to metabolize certain insecticides across all major bee families while identifying a small number of bee species where this function may have been lost. Furthermore, they illustrate the potential of a toxicogenomic approach to inform pesticide risk assessment for nonmanaged bee species by predicting the capability of bee pollinator species to break down synthetic insecticides.


Assuntos
Abelhas , Sistema Enzimático do Citocromo P-450 , Evolução Molecular , Genes de Insetos , Inativação Metabólica , Proteínas de Insetos , Inseticidas , Animais , Abelhas/enzimologia , Abelhas/genética , Sequência Conservada , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Inseticidas/metabolismo , Inseticidas/toxicidade , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , Filogenia
10.
BMJ Open ; 11(12): e050100, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-37010923

RESUMO

INTRODUCTION: Diagnosing neonatal sepsis is heavily dependent on clinical phenotyping as culture-positive body fluid has poor sensitivity, and existing blood biomarkers have poor specificity.A combination of machine learning, statistical and deep pathway biology analyses led to the identification of a tripartite panel of biologically connected immune and metabolic markers that showed greater than 99% accuracy for detecting bacterial infection with 100% sensitivity. The cohort study described here is designed as a large-scale clinical validation of this previous work. METHODS AND ANALYSIS: This multicentre observational study will prospectively recruit a total of 1445 newborn infants (all gestations)-1084 with suspected early-or late-onset sepsis, and 361 controls-over 4 years. A small volume of whole blood will be collected from infants with suspected sepsis at the time of presentation. This sample will be used for integrated transcriptomic, lipidomic and targeted proteomics profiling. In addition, a subset of samples will be subjected to cellular phenotype and proteomic analyses. A second sample from the same patient will be collected at 24 hours, with an opportunistic sampling for stool culture. For control infants, only one set of blood and stool sample will be collected to coincide with clinical blood sampling. Along with detailed clinical information, blood and stool samples will be analysed and the information will be used to identify and validate the efficacy of immune-metabolic networks in the diagnosis of bacterial neonatal sepsis and to identify new host biomarkers for viral sepsis. ETHICS AND DISSEMINATION: The study has received research ethics committee approval from the Wales Research Ethics Committee 2 (reference 19/WA/0008) and operational approval from Health and Care Research Wales. Submission of study results for publication will involve making available all anonymised primary and processed data on public repository sites. TRIAL REGISTRATION NUMBER: NCT03777670.


Assuntos
Sepse Neonatal , Sepse , Humanos , Biomarcadores , Estudos de Coortes , Estudos Multicêntricos como Assunto , Sepse Neonatal/diagnóstico , Sepse Neonatal/microbiologia , Estudos Observacionais como Assunto , Estudos Prospectivos , Proteômica
11.
Nat Ecol Evol ; 3(11): 1521-1524, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666734

RESUMO

Recent research has shown that several managed bee species have specific P450 enzymes that are preadapted to confer intrinsic tolerance to some insecticides including certain neonicotinoids. However, the universality of this finding across managed bee pollinators is unclear. Here we show that the alfalfa leafcutter bee, Megachile rotundata, lacks such P450 enzymes and is >2,500-fold more sensitive to the neonicotinoid thiacloprid and 170-fold more sensitive to the butenolide insecticide flupyradifurone than other managed bee pollinators. These findings have important implications for the safe use of insecticides in crops where M. rotundata is used for pollination, and ensuring that regulatory pesticide risk assessment frameworks are protective of this species.


Assuntos
Inseticidas , 4-Butirolactona/análogos & derivados , Animais , Abelhas , Neonicotinoides , Polinização
12.
PLoS Genet ; 15(2): e1007903, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716069

RESUMO

The impact of pesticides on the health of bee pollinators is determined in part by the capacity of bee detoxification systems to convert these compounds to less toxic forms. For example, recent work has shown that cytochrome P450s of the CYP9Q subfamily are critically important in defining the sensitivity of honey bees and bumblebees to pesticides, including neonicotinoid insecticides. However, it is currently unclear if solitary bees have functional equivalents of these enzymes with potentially serious implications in relation to their capacity to metabolise certain insecticides. To address this question, we sequenced the genome of the red mason bee, Osmia bicornis, the most abundant and economically important solitary bee species in Central Europe. We show that O. bicornis lacks the CYP9Q subfamily of P450s but, despite this, exhibits low acute toxicity to the N-cyanoamidine neonicotinoid thiacloprid. Functional studies revealed that variation in the sensitivity of O. bicornis to N-cyanoamidine and N-nitroguanidine neonicotinoids does not reside in differences in their affinity for the nicotinic acetylcholine receptor or speed of cuticular penetration. Rather, a P450 within the CYP9BU subfamily, with recent shared ancestry to the Apidae CYP9Q subfamily, metabolises thiacloprid in vitro and confers tolerance in vivo. Our data reveal conserved detoxification pathways in model solitary and eusocial bees despite key differences in the evolution of specific pesticide-metabolising enzymes in the two species groups. The discovery that P450 enzymes of solitary bees can act as metabolic defence systems against certain pesticides can be leveraged to avoid negative pesticide impacts on these important pollinators.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/genética , Neonicotinoides/farmacologia , Animais , Evolução Biológica , Sistema Enzimático do Citocromo P-450/genética , Europa (Continente) , Genômica/métodos , Inseticidas/farmacologia , Polinização/efeitos dos fármacos , Polinização/genética , Tiazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...