Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(9)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36136573

RESUMO

With increasing interest in home dialysis, there is a need for a translational uremic large animal model to evaluate technical innovations in peritoneal dialysis (PD). To this end, we developed a porcine model with kidney failure. Stable chronic kidney injury was induced by bilateral subtotal renal artery embolization. Before applying PD, temporary aggravation of uremia was induced by administration of gentamicin (10 mg/kg i.v. twice daily for 7 days), to obtain uremic solute levels within the range of those of dialysis patients. Peritoneal transport was assessed using a standard peritoneal permeability assessment (SPA). After embolization, urea and creatinine concentrations transiently increased from 1.6 ± 0.3 to 7.5 ± 1.2 mM and from 103 ± 14 to 338 ± 67 µM, respectively, followed by stabilization within 1-2 weeks to 2.5 ± 1.1 mM and 174 ± 28 µM, respectively. Gentamicin induced temporary acute-on-chronic kidney injury with peak urea and creatinine concentrations of 16.7 ± 5.3 mM and 932 ± 470 µM respectively. PD was successfully applied, although frequently complicated by peritonitis. SPA showed a low transport status (D/P creatinine at 4 h of 0.41 (0.36-0.53)) with a mass transfer area coefficient of 9.6 ± 3.1, 4.6 ± 2.6, 3.4 ± 2.3 mL/min for urea, creatinine, and phosphate respectively. In conclusion, this porcine model with on-demand aggravation of uremia is suitable for PD albeit with peritoneal transport characterized by a low transport status.


Assuntos
Diálise Peritoneal , Uremia , Animais , Creatinina , Soluções para Diálise , Gentamicinas , Diálise Peritoneal/efeitos adversos , Fosfatos , Suínos , Ureia , Uremia/terapia
2.
Artif Organs ; 45(11): 1422-1428, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34251693

RESUMO

A major challenge for the development of a wearable artificial kidney (WAK) is the removal of urea from the spent dialysate, as urea is the waste solute with the highest daily molar production and is difficult to adsorb. Here we present results on glucose degradation products (GDPs) formed during electrooxidation (EO), a technique that applies a current to the dialysate to convert urea into nitrogen, carbon dioxide, and hydrogen gas. Uremic plasma and peritoneal effluent were dialyzed for 8 hours with a WAK with and without EO-based dialysate regeneration. Samples were taken regularly during treatment. GDPs (glyoxal, methylglyoxal, and 3-deoxyglucosone) were measured in EO- and non-EO-treated fluids. Glyoxal and methylglyoxal concentrations increased 26- and 11-fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209- and 353-fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO, whereas no change was observed in GDP concentrations during dialysate regeneration without EO. EO for dialysate regeneration in a WAK is currently not safe due to the generation of GDPs which are not biocompatible.


Assuntos
Técnicas Eletroquímicas , Glucose/metabolismo , Rins Artificiais , Ureia/sangue , Soluções para Diálise/química , Humanos , Diálise Renal , Dispositivos Eletrônicos Vestíveis
3.
Biology (Basel) ; 10(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916709

RESUMO

A large animal model of (end-stage) kidney disease (ESKD) is needed for the preclinical testing of novel renal replacement therapies. This study aimed to create stable uremia via subtotal renal artery embolization in goats and induce a temporary further decline in kidney function by administration of gentamicin. Renal artery embolization was performed in five Dutch white goats by infusing polyvinyl alcohol particles in branches of the renal artery, aiming for the embolization of ~80% of one kidney and complete embolization of the contralateral kidney. Gentamicin was administered to temporarily further increase the plasma concentrations of uremic toxins. After initial acute kidney injury, urea and creatinine plasma concentrations stabilized 1.5 ± 0.7 months post-embolization and remained elevated (12 ± 1.4 vs. 5.6 ± 0.8 mmol/L and 174 ± 45 vs. 65 ± 5.6 µmol/L, resp.) during follow-up (16 ± 6 months). Gentamicin induced temporary acute-on-chronic kidney injury with a variable increase in plasma concentrations of small solutes (urea 29 ± 15 mmol/L, creatinine 841 ± 584 µmol/L, phosphate 2.2 ± 0.3 mmol/L and potassium 5.0 ± 0.6 mmol/L) and protein-bound uremic toxins representative of patients with ESKD. A uremic goat model characterized by stable moderate uremia was established via subtotal renal artery embolization with the induction of temporary severe acute-on-chronic kidney injury by the administration of gentamicin, allowing preclinical in vivo validation of novel renal replacement technologies.

4.
Physiol Rep ; 8(23): e14593, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33278069

RESUMO

A system for sorbent-assisted peritoneal dialysis (SAPD) has been developed that continuously recirculates dialysate via a tidal mode using a single-lumen peritoneal catheter with the regeneration of spent dialysate by means of sorbents. SAPD treatment may improve plasma clearance by the maintenance of a high plasma-to-dialysate concentration gradient and by increasing the mass transfer area coefficient (MTAC) of solutes. The system is designed for daily 8-hr treatment (12 kg, nighttime system). A wearable system (2.3 kg, daytime system) may further enhance the clearance of phosphate and organic waste solutes during the day. Uremic pigs (n = 3) were treated with the day- (n = 3) and nighttime system (n = 15) for 4-8 hr per treatment. Plasma clearance (Cl), MTAC, and total mass transport (MT) of urea, creatinine, phosphate, and potassium were compared with a static dwell (n = 28). Cl, MTAC, and MT of urea, creatinine, phosphate, and potassium were low in the pig as compared to humans due to the pig's low peritoneal transport status and could be enhanced only to a limited extent by SAPD treatment compared with a static dwell (nighttime system: Cl urea: ×1.5 (p = .029), Cl creatinine: ×1.7 (p = .054), Cl phosphate: ×1.5 (p = .158), Cl potassium: ×1.6 (p = .011); daytime system: Cl creatinine: ×2.7 (p = .040), Cl phosphate: ×2.2 (p = .039)). Sorbent-assisted peritoneal dialysis treatment in a uremic pig model is safe and enhances small solute clearance as compared to a static dwell. Future studies in humans or animal species with higher peritoneal transport should elucidate whether our SAPD system enhances clearance to a clinically relevant extent as compared to conventional PD.


Assuntos
Diálise Peritoneal/métodos , Uremia/terapia , Animais , Resinas de Troca Aniônica/química , Resinas de Troca Aniônica/normas , Catéteres/normas , Cloretos/sangue , Cloretos/urina , Creatinina/urina , Feminino , Diálise Peritoneal/instrumentação , Fosfatos/sangue , Fosfatos/urina , Potássio/sangue , Potássio/urina , Suínos , Ureia/sangue , Ureia/urina
5.
Am J Physiol Renal Physiol ; 319(2): F162-F170, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32475132

RESUMO

A system for sorbent-assisted peritoneal dialysis (SAPD) was designed to continuously recirculate dialysate via a tidal mode using a single lumen peritoneal catheter with regeneration of spent dialysate by means of sorbent technology. We hypothesize that SAPD treatment will maintain a high plasma-to-dialysate concentration gradient and increase the mass transfer area coefficient of solutes. Thereby, the SAPD system may enhance clearance while reducing the number of exchanges. Application is envisaged at night as a bedside device (12 kg, nighttime system). A wearable system (2.0 kg, daytime system) may further enhance clearance during the day. Urea, creatinine, and phosphate removal were studied with the daytime and nighttime system (n = 3 per system) by recirculating 2 liters of spent peritoneal dialysate via a tidal mode (mean flow rate: 50 and 100 mL/min, respectively) for 8 h in vitro. Time-averaged plasma clearance over 24 h was modeled assuming one 2 liter exchange/day, an increase in mass transfer area coefficient, and 0.9 liters ultrafiltration/day. Urea, creatinine, and phosphate removal was 33.2 ± 4.1, 5.3 ± 0.5, and 6.2 ± 1.8 mmol, respectively, with the daytime system and 204 ± 28, 10.3 ± 2.4, and 11.4 ± 2.1 mmol, respectively, with the nighttime system. Time-averaged plasma clearances of urea, creatinine and phosphate were 9.6 ± 1.1, 9.6 ± 1.7, and 7.0 ± 0.9 mL/min, respectively, with the nighttime system and 10.8 ± 1.1, 13.4 ± 1.8, and 9.7 ± 1.6 mL/min, respectively, with the daytime and nighttime system. SAPD treatment may improve removal of uremic toxins compared with conventional peritoneal dialysis, provided that peritoneal mass transport will increase.


Assuntos
Creatinina/sangue , Soluções para Diálise/farmacologia , Diálise Peritoneal , Ureia/sangue , Humanos , Cinética , Peritônio/metabolismo , Fosfatos/sangue , Ultrafiltração/métodos
6.
Macromol Biosci ; 20(3): e1900396, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32065727

RESUMO

The aim of this study is to develop polymeric chemisorbents with a high density of ninhydrin groups, able to covalently bind urea under physiological conditions and thus potentially suitable for use in a wearable artificial kidney. Macroporous beads are prepared by suspension polymerization of 5-vinyl-1-indanone (vinylindanone) using a 90:10 (v/v) mixture of toluene and nitrobenzene as a porogen. The indanone groups are subsequently oxidized in a one-step procedure into ninhydrin groups. Their urea absorption kinetics are evaluated under both static and dynamic conditions at 37 °C in simulated dialysate (urea in phosphate buffered saline). Under static conditions and at a 1:1 molar ratio of ninhydrin: urea the sorbent beads remove ≈0.6-0.7 mmol g-1 and under dynamic conditions and at a 2:1 molar excess of ninhydrin ≈0.6 mmol urea g-1 sorbent in 8 h at 37 °C, which is a step toward a wearable artificial kidney.


Assuntos
Rins Artificiais , Ninidrina/química , Ureia/química , Dispositivos Eletrônicos Vestíveis , Adsorção , Humanos
7.
Stem Cells Int ; 2019: 1232810, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31933648

RESUMO

BACKGROUND: Cell-based therapies are being developed to meet the need for curative therapy in chronic kidney disease (CKD). Bone marrow- (BM-) derived mesenchymal stromal cells (MSCs) enhance tissue repair and induce neoangiogenesis through paracrine action of secreted proteins and extracellular vesicles (EVs). Administration of allogeneic BM MSCs is less desirable in a patient population likely to require a kidney transplant, but potency of autologous MSCs should be confirmed, given previous indications that CKD-induced dysfunction is present. While the immunomodulatory capacity of CKD BM MSCs has been established, it is unknown whether CKD affects wound healing and angiogenic potential of MSC-derived CM and EVs. METHODS: MSCs were cultured from BM obtained from kidney transplant recipients (N = 15) or kidney donors (N = 17). Passage 3 BM MSCs and BM MSC-conditioned medium (CM) were used for experiments. EVs were isolated from CM by differential ultracentrifugation. BM MSC differentiation capacity, proliferation, and senescence-associated ß-galactosidase activity was assessed. In vitro promigratory and proangiogenic capacity of BM MSC-derived CM and EVs was assessed using an in vitro scratch wound assay and Matrigel angiogenesis assay. RESULTS: Healthy and CKD BM MSCs exhibited similar differentiation capacity, proliferation, and senescence-associated ß-galactosidase activity. Scratch wound migration was not significantly different between healthy and CKD MSCs (P = 0.18). Healthy and CKD BM MSC-derived CM induced similar tubule formation (P = 0.21). There was also no difference in paracrine regenerative function of EVs (scratch wound: P = 0.6; tubulogenesis: P = 0.46). CONCLUSIONS: Our results indicate that MSCs have an intrinsic capacity to produce proangiogenic paracrine factors, including EVs, which is not affected by donor health status regarding CKD. This suggests that autologous MSC-based therapy is a viable option in CKD.

8.
Am J Physiol Renal Physiol ; 315(5): F1385-F1397, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29993277

RESUMO

The key to success in developing a wearable dialysis device is a technique to safely and efficiently regenerate and reuse a small volume of dialysate in a closed-loop system. In a hemodialysis model in goats, we explored whether urea removal by electro-oxidation (EO) could be effectively and safely applied in vivo. A miniature dialysis device was built, containing 1 or 2 "EO units," each with 10 graphite electrodes, with a cumulative electrode surface of 585 cm2 per unit. The units also contained poly(styrene-divinylbenzene) sulfonate beads, FeOOH beads, and activated carbon for respective potassium, phosphate, and chlorine removal. Urea, potassium, and phosphate were infused to create "uremic" conditions. Urea removal was dependent on total electrode surface area [removal of 8 mmol/h (SD 1) and 16 mmol/h (SD 2) and clearance of 12 ml/min (SD 1) and 20 ml/min (SD 3) with 1 and 2 EO units, respectively] and plasma urea concentration but not on flow rate. Extrapolating urea removal with 2 EO units to 24 h would suffice to remove daily urea production, but for intermittent dialysis, additional units would be required. EO had practically no effects on potassium and phosphate removal or electrolyte balance. However, slight ammonium releasewas observed, and some chlorine release at higher dialysate flow rates. Minor effects on acid-base balance were observed, possibly partly due to infusion of chloride. Mild hemolysis occurred, which seemed related to urea infusion. In conclusion, clinically relevant urea removal was achieved in vivo by electro-oxidation. Efficacy and safety testing in a large-animal model with uremia is now indicated.


Assuntos
Soluções para Diálise/metabolismo , Diálise Renal/instrumentação , Ureia/sangue , Uremia/terapia , Dispositivos Eletrônicos Vestíveis , Equilíbrio Ácido-Base , Desequilíbrio Ácido-Base/etiologia , Desequilíbrio Ácido-Base/fisiopatologia , Animais , Creatinina/sangue , Modelos Animais de Doenças , Desenho de Equipamento , Cabras , Hemólise , Miniaturização , Modelos Biológicos , Oxirredução , Fosfatos/sangue , Potássio/sangue , Diálise Renal/efeitos adversos , Fatores de Tempo , Uremia/sangue , Uremia/fisiopatologia , Vigília
9.
Stem Cells Int ; 2017: 4680612, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28607561

RESUMO

BACKGROUND: Endothelial colony forming cells (ECFCs) have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS). The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. METHODS: Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN). Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. RESULTS: Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. CONCLUSION: The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.

10.
Nephrol Dial Transplant ; 32(6): 951-959, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27220758

RESUMO

BACKGROUND: Patients on standard intermittent haemodialysis suffer from strong fluctuations in plasma potassium and phosphate. Prolonged dialysis with a wearable device, based on continuous regeneration of a small volume of dialysate using ion exchangers, could moderate these fluctuations and offer increased clearance of these electrolytes. We report in vivo results on the efficacy of potassium and phosphate adsorption from a wearable dialysis device. We explore whether equilibration of ion exchangers at physiological Ca 2+ , Mg 2+ and hypotonic NaCl can prevent calcium/magnesium adsorption and net sodium release, respectively. Effects on pH and HCO3- were studied. METHODS: Healthy goats were instrumented with a central venous catheter and dialysed. Potassium and phosphate were infused to achieve plasma concentrations commonly observed in dialysis patients. An adsorption cartridge containing 80 g sodium poly(styrene-divinylbenzene) sulphonate and 40 g iron oxide hydroxide beads for potassium and phosphate removal, respectively, was incorporated in a dialysate circuit. Sorbents were equilibrated and regenerated with a solution containing NaCl, CaCl 2 and MgCl 2 . Blood was pumped over a dialyser and dialysate was recirculated over the adsorption cartridge in a countercurrent direction. RESULTS: Potassium and phosphate adsorption was 7.7 ± 2.7 and 4.9 ± 1.3 mmol in 3 h, respectively. Adsorption capacity remained constant during consecutive dialysis sessions and increased with increasing K + and PO43-. Equilibration at physiological Ca 2+ and Mg 2+ prevented net adsorption, eliminating the need for post-cartridge calcium and magnesium infusion. Equilibration at hypotonic NaCl prevented net sodium release Fe 2+ and arterial pH did not change. Bicarbonate was adsorbed, which could be prevented by equilibrating at HCO3- 15 mM. CONCLUSION: We demonstrate clinically relevant, concentration-dependent, pH-neutral potassium and phosphate removal in vivo with small volumes of regenerable ion exchangers in our prototype wearable dialysis device. Application of the selected ion exchangers for potassium and phosphate removal in a wearable dialysis device appears to be effective with a low-risk profile.


Assuntos
Fosfatos/isolamento & purificação , Potássio/isolamento & purificação , Diálise Renal/instrumentação , Adsorção , Animais , Bicarbonatos/sangue , Reutilização de Equipamento , Compostos Férricos/química , Cabras , Humanos , Troca Iônica , Magnésio/sangue , Fosfatos/sangue , Potássio/sangue , Melhoria de Qualidade , Diálise Renal/métodos , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...