Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastro Hep Adv ; 2(8): 1103-1119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098742

RESUMO

Cancer immunotherapy has become an indispensable mode of treatment for a multitude of solid tumor cancers. Colorectal cancer (CRC) has been one of the many cancer types to benefit from immunotherapy, especially in advanced disease where standard treatment fails to prevent recurrence or results in poor survival. The efficacy of immunotherapy in CRC has not been without challenge, as early clinical trials observed dismal responses in unselected CRC patients treated with checkpoint inhibitors. Many studies and clinical trials have since refined immunotherapies available for CRC, solidifying immunotherapy as a powerful asset for CRC treatment. This review article examines CRC immunotherapies, from their foundation, through emerging avenues for improvement, to future directions.

2.
Cell Mol Gastroenterol Hepatol ; 16(4): 557-572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37369278

RESUMO

BACKGROUND & AIMS: Metabolic syndrome (MetS) is characterized by obesity, glucose intolerance, and hepatic steatosis. Alterations in the gut microbiome play important roles in the development of MetS. However, the mechanisms by which this occurs are poorly understood. Dual oxidase 2 (DUOX2) is an antimicrobial reduced nicotinamide adenine dinucleotide phosphate oxidase expressed in the gut epithelium. Here, we posit that epithelial DUOX2 activity provides a mechanistic link between the gut microbiome and the development of MetS. METHODS: Mice carrying an intestinal epithelial-specific deletion of dual oxidase maturation factor 1/2 (DA IEC-KO), and wild-type littermates were fed a standard diet and killed at 24 weeks. Metabolic alterations were determined by glucose tolerance, lipid tests, and body and organ weight measurements. DUOX2 activity was determined by Amplex Red. Intestinal permeability was determined by fluorescein isothiocyanate-dextran, microbial translocation assessments, and portal vein lipopolysaccharide measurements. Metagenomic analysis of the stool microbiome was performed. The role of the microbiome was assessed in antibiotic-treated mice. RESULTS: DA IEC-KO males showed increased body and organ weights accompanied by glucose intolerance and increased plasma lipid and liver enzyme levels, and increased adiposity in the liver and adipose tissue. Expression of F4/80, CD68, uncoupling protein 1, carbohydrate response element binding protein, leptin, and adiponectin was altered in the liver and adipose tissue of DA IEC-KO males. DA IEC-KO males produced less epithelial H2O2, had altered relative abundance of Akkermansiaceae and Lachnospiraceae in stool, and showed increased portal vein lipopolysaccharides and intestinal permeability. Females were protected from barrier defects and MetS, despite producing less H2O2. Antibiotic depletion abrogated all MetS phenotypes observed. CONCLUSIONS: Intestinal epithelial inactivity of DUOX2 promotes MetS in a microbiome-dependent manner.


Assuntos
Microbioma Gastrointestinal , Intolerância à Glucose , Síndrome Metabólica , Animais , Feminino , Masculino , Camundongos , Antibacterianos , Oxidases Duais , Peróxido de Hidrogênio , Lipopolissacarídeos , Obesidade/metabolismo
3.
Gastroenterology ; 160(3): 797-808.e6, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33127391

RESUMO

BACKGROUND & AIMS: Chronic colonic inflammation leads to dysplasia and cancer in patients with inflammatory bowel disease. We have described the critical role of innate immune signaling via Toll-like receptor 4 (TLR4) in the pathogenesis of dysplasia and cancer. In the current study, we interrogate the intersection of TLR4 signaling, epithelial redox activity, and the microbiota in colitis-associated neoplasia. METHODS: Inflammatory bowel disease and colorectal cancer data sets were analyzed for expression of TLR4, dual oxidase 2 (DUOX2), and NADPH oxidase 1 (NOX1). Epithelial production of hydrogen peroxide (H2O2) was analyzed in murine colonic epithelial cells and colonoid cultures. Colorectal cancer models were carried out in villin-TLR4 mice, carrying a constitutively active form of TLR4, their littermates, and villin-TLR4 mice backcrossed to DUOXA-knockout mice. The role of the TLR4-shaped microbiota in tumor development was tested in wild-type germ-free mice. RESULTS: Activation of epithelial TLR4 was associated with up-regulation of DUOX2 and NOX1 in inflammatory bowel disease and colorectal cancer. DUOX2 was exquisitely dependent on TLR4 signaling and mediated the production of epithelial H2O2. Epithelial H2O2 was significantly increased in villin-TLR4 mice; TLR4-dependent tumorigenesis required the presence of DUOX2 and a microbiota. Mucosa-associated microbiota transferred from villin-TLR4 mice to wild-type germ-free mice caused increased H2O2 production and tumorigenesis. CONCLUSIONS: Increased TLR4 signaling in colitis drives expression of DUOX2 and epithelial production of H2O2. The local milieu imprints the mucosal microbiota and imbues it with pathogenic properties demonstrated by enhanced epithelial reactive oxygen species and increased development of colitis-associated tumors. The inter-relationship between epithelial reactive oxygen species and tumor-promoting microbiota requires a 2-pronged strategy to reduce the risk of dysplasia in colitis patients.


Assuntos
Colite Ulcerativa/complicações , Neoplasias Associadas a Colite/patologia , Oxidases Duais/metabolismo , Microbioma Gastrointestinal/imunologia , Receptor 4 Toll-Like/metabolismo , Animais , Azoximetano/administração & dosagem , Azoximetano/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/imunologia , Carcinogênese/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Neoplasias Associadas a Colite/imunologia , Neoplasias Associadas a Colite/microbiologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Conjuntos de Dados como Assunto , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Vida Livre de Germes , Humanos , Peróxido de Hidrogênio/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 1/metabolismo , Receptor 4 Toll-Like/genética
4.
Inflamm Bowel Dis ; 26(6): 797-808, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32333601

RESUMO

BACKGROUND: Patients with inflammatory bowel disease (IBD) have intestinal inflammation and are treated with immune-modulating medications. In the face of the coronavirus disease-19 pandemic, we do not know whether patients with IBD will be more susceptible to infection or disease. We hypothesized that the viral entry molecules angiotensin I converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are expressed in the intestine. We further hypothesized that their expression could be affected by inflammation or medication usage. METHODS: We examined the expression of Ace2 and Tmprss2 by quantitative polymerase chain reacion in animal models of IBD. Publicly available data from organoids and mucosal biopsies from patients with IBD were examined for expression of ACE2 and TMPRSS2. We conducted RNA sequencing for CD11b-enriched cells and peripheral and lamina propria T-cells from well-annotated patient samples. RESULTS: ACE2 and TMPRSS2 were abundantly expressed in the ileum and colon and had high expression in intestinal epithelial cells. In animal models, inflammation led to downregulation of epithelial Ace2. Expression of ACE2 and TMPRSS2 was not increased in samples from patients with compared with those of control patients. In CD11b-enriched cells but not T-cells, the level of expression of ACE2 and TMPRSS2 in the mucosa was comparable to other functional mucosal genes and was not affected by inflammation. Anti-tumor necrosis factor drugs, vedolizumab, ustekinumab, and steroids were linked to significantly lower expression of ACE2 in CD11b-enriched cells. CONCLUSIONS: The viral entry molecules ACE2 and TMPRSS2 are expressed in the ileum and colon. Patients with IBD do not have higher expression during inflammation; medical therapy is associated with lower levels of ACE2. These data provide reassurance for patients with IBD.


Assuntos
Regulação da Expressão Gênica , Imunossupressores/farmacologia , Síndrome do Intestino Irritável/fisiopatologia , Peptidil Dipeptidase A/genética , Serina Endopeptidases/genética , Adolescente , Adulto , Idoso , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/metabolismo , Biópsia , COVID-19 , Colo/efeitos dos fármacos , Colo/metabolismo , Biologia Computacional , Infecções por Coronavirus/fisiopatologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Íleo/efeitos dos fármacos , Íleo/metabolismo , Imunossupressores/uso terapêutico , Inflamação/fisiopatologia , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/fisiopatologia , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Transcriptoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...