Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(22): 28423-28434, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767841

RESUMO

The eminence of transitioning from traditional fossil fuel-based energy resources to renewable and sustainable energy sources is most evidently crucial. The potential of hydrogen as an alternative energy source has specifically focuses the electrocatalytic water splitting (EWS) as a promising technique for generating hydrogen. Development of efficient electrocatalysts to facilitate the EWS process while rationalizing the limitations of noble metal catalysts like platinum has become one of the daunting tasks. Consequently, porous functional materials such as metal complexes (MCs) and graphene oxide (GO) can act as potential catalysts for EWS. Therefore, a composite of GO and a mononuclear bismuth metal complex is synthesized through in situ facile synthesis, which is further utilized as an efficient electrocatalyst for the hydrogen evolution reaction (HER). Several potential electrocatalytic MC@GO composite (BMGO-3,5,7) materials were prepared with compositional variation of GO (3, 5, and 7 wt %). The experimental results demonstrate that the BMGO5 composite exhibits excellent HER activity with a low overpotential value of 105 mV at 10 mA cm-2 and a low Tafel slope of 44 mV dec-1 in 1 M KOH solution. Furthermore, a comprehensive investigation on the potentiality of the BMC-GO composite for hydrogen evolution from river water splitting was performed in order to address the issue of freshwater depletion. Inclusion of a mononuclear MC for facile synthesis of functional GO-based efficient electrocatalyst material is very scanty in the literature. This unique approach could assist future research endeavors toward designing efficient electrocatalysts for sustainable renewable energy generation. This is one of the first of its kind, where mononuclear MCs were utilized to develop GO-based functional composite materials for efficient electrocatalysis toward sustainable renewable energy generation.

2.
Plant J ; 119(1): 413-431, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625788

RESUMO

The protein-repairing enzyme (PRE) PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT) influences seed vigor by repairing isoaspartyl-mediated protein damage in seeds. However, PIMTs function in other seed traits, and the mechanisms by which PIMT affects such seed traits are still poorly understood. Herein, through molecular, biochemical, and genetic studies using overexpression and RNAi lines in Oryza sativa and Arabidopsis thaliana, we demonstrate that PIMT not only affects seed vigor but also affects seed size and weight by modulating enolase (ENO) activity. We have identified ENO2, a glycolytic enzyme, as a PIMT interacting protein through Y2H cDNA library screening, and this interaction was further validated by BiFC and co-immunoprecipitation assay. We show that mutation or suppression of ENO2 expression results in reduced seed vigor, seed size, and weight. We also proved that ENO2 undergoes isoAsp modification that affects its activity in both in vivo and in vitro conditions. Further, using MS/MS analyses, amino acid residues that undergo isoAsp modification in ENO2 were identified. We also demonstrate that PIMT repairs such isoAsp modification in ENO2 protein, protecting its vital cellular functions during seed maturation and storage, and plays a vital role in regulating seed size, weight, and seed vigor. Taken together, our study identified ENO2 as a novel substrate of PIMT, and both ENO2 and PIMT in turn implicate in agronomically important seed traits.


Assuntos
Arabidopsis , Oryza , Fosfopiruvato Hidratase , Proteína D-Aspartato-L-Isoaspartato Metiltransferase , Sementes , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Sementes/genética , Sementes/fisiologia , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Oryza/genética , Oryza/enzimologia , Oryza/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas
3.
RSC Adv ; 14(1): 397-404, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173612

RESUMO

Explosive nitroaromatic compounds (epNACs) are a group of chemicals that have caused significant human casualties through terrorist attacks and they also pose health risks. For the benefit of homeland security and environmental health, there is room for advancing research on the precise detection of epNACs. Coordination polymers (CPs) successfully serve this purpose because of their binding abilities and quenching capabilities. In this regard, a one-dimensional (1D) CP [Zn(bdc)(avp)2(H2O)]n (1; H2bdc = 1,4-benzenedicarboxylic acid and avp = 4-[2-(9-anthryl)vinyl]pyridine) was synthesized, which remarkably demonstrated extremely efficient ratiometric and selective sensing capacity toward epNACs and the mutagenic pollutant 2,4,6-trinitrophenol (TNP) with a quick response. Density functional theory (DFT) calculations provided a thorough analysis of the mechanistic routes behind the quenching reaction. Herein, geometrically accessible interaction sites were strategically decorated using anthracene moieties, allowing the quick and precise detection of explosive nitro derivatives and the carcinogenic pollutant TNP with increased sensitivity.

4.
J Biomol Struct Dyn ; : 1-19, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38239069

RESUMO

Six drugs (dapsone, diltiazem, timolol, rosiglitazone, mesalazine, and milnacipran) that were predicted by network-based polypharmacology approaches as potential anti-Alzheimer's drugs, have been subjected in this study for in silico and in vitro evaluation to check their potential against protein fibrillation, which is a causative factor for multiple diseases such as Alzheimer's disease, Parkinson's disease, Huntington disease, cardiac myopathy, type-II diabetes mellitus and many others. Molecular docking and thereafter molecular dynamics (MD) simulations revealed that diltiazem, rosiglitazone, and milnacipran interact with the binding residues such as Asp52, Glu35, Trp62, and Asp101, which lie within the fibrillating region of HEWL. The MM-GBSA analysis revealed -7.86, -5.05, and -10.29 kcal/mol as the binding energy of diltiazem, rosiglitazone, and milnacipran. The RMSD and RMSF calculations revealed significant stabilities of these ligands within the binding pocket of HEWL. While compared with two reported ligands inhibiting HEWL fibrillation, milnacipran depicted almost similar binding potential with one of the known ligands (Ligand binding affinity -10.66 kcal/mol) of HEWL. Furthermore, secondary structure analyses revealed notable inhibition of the secondary structural changes with our candidate ligand; especially regarding retention of the 3/10 α-helix both by DSSP simulation, Circular dichroism, and FESEM-based microscopic image analyses. Taking further into experimental validation, all three ligands inhibited fibrillation in HEWL in simulated conditions as revealed by blue shift in Congo red assay and later expressing percentage inhibition in ThioflavinT assay as well. However, dose-dependent kinetics revealed that the antifibrillatory effects of drugs are more pronounced at low protein concentrations.Communicated by Ramaswamy H. Sarma.

5.
ACS Omega ; 8(38): 35283-35294, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779957

RESUMO

Natural products possess unique and broader intricacies in the chemical space and have been essential for drug discovery. The crucial factor for drug discovery success is not the size of the library but rather its structural diversity. Although reports on the number of new structurally diverse natural products (NPs) have declined recently, researchers follow the next logical step: synthesizing natural product hybrids and their analogues using the most potent tool, diversity-oriented synthesis (DOS). Here, we use weed Parthenium hysterophorus as a source of parthenin for synthesis of novel dispiro-pyrrolizidino/thiopyrrolizidino-oxindolo/indanedione natural product hybrids of parthenin via chemo-, regio-, and stereoselective azomethine ylide cycloaddition. All synthesized compounds were characterized through a detailed analysis of one-dimensional (1D) and two-dimensional (2D) NMR and HRMS data, and the stereochemistries of the compounds were confirmed by X-ray diffraction analysis. All compounds were evaluated for their cytotoxicity against four cell lines (HCT-116, A549, Mia-Paca-2, and MCF-7), and compound 6 inhibited the HCT-116 cells with an IC50 of 5.0 ± 0.08 µM.

6.
Plant Cell ; 35(10): 3712-3738, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37462265

RESUMO

F-box proteins have diverse functions in eukaryotic organisms, including plants, mainly targeting proteins for 26S proteasomal degradation. Here, we demonstrate the role of the F-box protein SKP1-INTERACTING PARTNER 31 (SKIP31) from Arabidopsis (Arabidopsis thaliana) in regulating late seed maturation events, seed vigor, and viability through biochemical and genetic studies using skip31 mutants and different transgenic lines. We show that SKIP31 is predominantly expressed in seeds and that SKIP31 interacts with JASMONATE ZIM DOMAIN (JAZ) proteins, key repressors in jasmonate (JA) signaling, directing their ubiquitination for proteasomal degradation independently of coronatine/jasmonic acid-isoleucine (JA-Ile), in contrast to CORONATINE INSENSITIVE 1, which sends JAZs for degradation in a coronatine/JA-Ile dependent manner. Moreover, JAZ proteins interact with the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) and repress its transcriptional activity, which in turn directly or indirectly represses the expression of downstream genes involved in the accumulation of LATE EMBRYOGENESIS ABUNDANT proteins, protective metabolites, storage compounds, and abscisic acid biosynthesis. However, SKIP31 targets JAZ proteins, deregulates ABI5 activity, and positively regulates seed maturation and consequently seed vigor. Furthermore, ABI5 positively influences SKIP31 expression, while JAZ proteins repress ABI5-mediated transactivation of SKIP31 and exert feedback regulation. Taken together, our findings reveal the role of the SKIP31-JAZ-ABI5 module in seed maturation and consequently, establishment of seed vigor.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/genética , Arabidopsis/metabolismo , Isoleucina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas F-Box/genética , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Eur J Pediatr ; 182(9): 3883-3891, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336848

RESUMO

Routine practice of delayed cord clamping (DCC) is the standard of care in vigorous neonates. However there is no consensus on the recommended approach to placental transfusion in non-vigorous neonates. In this trial, we tried to examine the effect of cut umbilical cord milking (C-UCM) as compared to early cord clamping (ECC) on hematological and clinical hemodynamic parameters in non-vigorous preterm neonates of 30-35 weeks gestation. The primary outcome assessed was venous hematocrit (Hct) at 48 (± 4) hours of postnatal age. The important secondary outcomes assessed were serum ferritin at 6 weeks of age, mean blood pressure in the initial transitional phase along with important neonatal morbidities and potential complications. In this single centre randomized controlled trial, 134 non vigorous neonates of 30-35 weeks gestation were allocated in a 1:1 ratio to either C-UCM (n = 67) or ECC (n = 67). For statistical analysis, unpaired Student t and Chi square or Fisher's exact test were used. The mean Hct at 48 h was higher in the C-UCM group as compared to the control group, 50.24(4.200) vs 46.16(2.957), p < .0001. Also significantly higher was the mean Hct at 12 h, 6 weeks and mean serum ferritin at 6 weeks of age in the milked group (p < .0001). Mean blood pressure at 1 h and 6 h was also significantly higher in the milked arm. Need for transfusion and inotropes was less in the milked group but not statistically significant. No significant difference in potential complications was observed between the groups.    Conclusion: C-UCM stabilizes initial blood pressure and results in higher hematocrit and improved iron stores. It can be an alternative to DCC in non-vigorous preterm neonates of 30-35 weeks' gestation. Further large multicentric studies are needed to fully establish its efficacy and safety.   Trial registration: CTRI/2021/12/038606; registration date December 14, 2021. What is Known: • DCC is the routinely recommended method of placental transfusion for vigorous neonates but no consensus exist for neonates requiring resuscitation at birth. • C-UCM is easier to perform in non-vigorous neonates but there is paucity of studies in the preterm population. What is New: • C-UCM is effective as well as safe in non-vigorous preterm neonates of 30-35 weeks gestational age. • C-UCM holds promise as an alternative to DCC, especially in resource limited settings and in situations where the later is not feasible.

8.
Heliyon ; 9(2): e13620, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873140

RESUMO

In the quest of recognizing hazardous nitro-aromatic compounds in water, two pyridine-functionalized Schiff-base chemosensors, DMP ((E)-N-(3,4-dimethoxybenzylidene)(pyridin-2-yl)methanamine)) and MP (4-((E)-((pyridin-2-yl)methylimino)methyl)-2-ethoxyphenol) have been synthesized to detect mutagenic 2,4,6-Trinitrophenol (TNP) in soil, water as well as cellular matrices by producing turn-off emission responses as a combined consequence of PET and RET processes. Several experimental analyses including ESI-MS, FT-IR, photoluminescence, 1H NMR titration, and the theoretical calculations ascertained the formation and sensing efficacies of the chemosensors. The analytical substantiations revealed that structural variation of the chemosensors played a significant role in improving the sensing efficiency, which would certainly be worthwhile in developing small molecular TNP sensors. The present work depicted that the electron density within the MP framework was more than that of DMP due to the intentional incorporation of -OEt and -OH groups. As a result, MP represented a strong interaction mode towards the electron-deficient TNP with a detection limit of 39 µM.

9.
Nat Prod Res ; 37(13): 2215-2224, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35129017

RESUMO

Aims of the study were the phytochemical investigation and chemical transformation of isolated compounds of medicinal plant listed in 'Ayurveda' like Dolichandrone atrovirens, endemic to Indian subcontinents. From chloroform extract of D. atrovirens four compounds; Ursolic acid (1), Maslinic acid (2), Lupeol (3), ß-sitosterol (4) and from methanol extract five compounds; ß-sitosterol-3-O-ß-D-glucopyranoside (5), 10-O-trans-p-Methoxycinnamoylcatalpol (6), Kaempferol-3-O-ß-D-glucopyranoside (7), 6-O-[6"(S)-hydroxy-2",6"dimethyl-2"(E)-7"-octadienoyl] catalpol (8) and Ixoside (9) were isolated. Ixoside was used for the semi-synthetic modification via azomethine ylide cycloaddition leading to novel spiro-oxindolo-pyrrolizidine adduct. The structures of novel adducts were elucidated by analysis of IR, MS and 1 D/2D NMR data. Furthermore, to confirm the chemo selection of only one double bond, we performed density functional theory (DFT) calculation, which confirms the chemo selectivity. In addition, in-silico ADME studies and atom-additive approach based on SASA was also examined for the molecules which suggest that they may be potential future candidates for drug discovery.


Assuntos
Compostos Fitoquímicos , Extratos Vegetais , Reação de Cicloadição , Estrutura Molecular
10.
Inorg Chem ; 62(1): 98-113, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36562764

RESUMO

Three coordination polymers (CPs 1-3) are prepared based on diverse electron-donating properties and coordination arrangements of conjugated ligands. Interestingly, this is also reflected in their photophysical properties. The distinguishable high emissive nature of the luminescent coordination polymer shows its potentiality toward the detection of the perilous substance 2,4,6-trinitrophenol (TNP) or picric acid (PA). TNP has a higher propensity among explosive nitroaromatic compounds (epNACs) due to its significant π···π interaction with the free benzene moieties present in the CPs. Among CPs 1-3, 2 exhibits the highest sensitivity and selectivity toward TNP because of the most favorable π-π stacking with the conjugated organic linker. The calculated limit of detection (LOD) and corresponding quenching constant (KSV) from the Stern-Volmer (SV) plot for 1, 2, and 3 are found to be 0.68 µM and 7.49 × 104 M-1, 0.41 µM and 8.01 × 104 M-1, and 1.18 µM and 8.1 × 104 M-1, respectively. The fluorescence quenching mechanism is also highly influenced by their structure and coordination arrangement.

11.
Trends Plant Sci ; 28(1): 7-9, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328871

RESUMO

The complex process of seed germination is impacted heavily by environmental cues, such as light, mediated via photosensory systems and phytochromes. This pathway was discovered a long time ago, but the underlying molecular mechanisms are not fully understood. Li et al. recently showed how ETHYLENE RESPONSE FACTORs (ERFs) modulate phytochrome-mediated regulation of germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Germinação/fisiologia , Sementes/metabolismo , Fitocromo/genética , Etilenos/metabolismo , Luz , Regulação da Expressão Gênica de Plantas/genética , Ácido Abscísico/metabolismo , Giberelinas/metabolismo
12.
New Phytol ; 236(3): 1042-1060, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35909309

RESUMO

Oxidation of methionine leads to the formation of methionine S-sulfoxide and methionine R-sulfoxide, which can be reverted by two types of methionine sulfoxide reductase (MSR): MSRA and MSRB. Though the role of MSR enzymes has been elucidated in various physiological processes, the regulation and role of MSR in seeds remains poorly understood. In this study, through molecular, biochemical, and genetic studies using seed-specific overexpression and RNAi lines of OsMSRB5 in Oryza sativa, we demonstrate the role of OsMSRB5 in maintaining seed vigor and longevity. We show that an age-induced reduction in the vigor and viability of seeds is correlated with reduced MSR activity and increased methionine sulfoxide (MetSO) formation. OsMSRB5 expression increases during seed maturation and is predominantly localized to the embryo. Further analyses on transgenic lines reveal the role of OsMSRB5 in modulating reactive oxygen species (ROS) homeostasis to preserve seed vigor and longevity. We show that ascorbate peroxidase and PROTEIN l-ISOASPARTYL METHYLTRANSFERASE undergo MetSO modification in seeds that affects their functional competence. OsMSRB5 physically interacts with these proteins and reverts this modification to facilitate their functions and preserve seed vigor and longevity. Our results thus illustrate the role of OsMSRB5 in preserving seed vigor and longevity by modulating ROS homeostasis in seeds.


Assuntos
Metionina Sulfóxido Redutases , Oryza , Ascorbato Peroxidases , Longevidade , Metionina/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/metabolismo , Oryza/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/metabolismo , Sulfóxidos
13.
Dalton Trans ; 51(5): 2083-2093, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35048912

RESUMO

Herein, an amine decorated Cd(II) metal-organic framework (MOF) with a uninodal 6-c topology was synthesized as a suitable platform for facile post-synthetic modification (PSM). The as-synthesized parent d10-MOF (1) with free -NH2 centers, when functionalized with two different carbonyl substituents (1-naphthaldehyde and benzophenone) of varying conjugation, produces two novel luminescent MOFs (LMOFs) viz.PSM-1 and PSM-2. The judicious incorporation of carbonyl substituents into the skeleton of 1 was rationalized via ESI-MS, 1H-NMR, FT-IR and PXRD analyses. Interestingly, both PSM-1 and PSM-2 show 'turn-on' luminescent behaviour in the presence of 1,4-dioxane with the limit of detection (LOD) as 1.079 ppm and 2.487 ppm, respectively, with prompt response time (∼55 s & ∼58 s, respectively). The inhibition of PET is comprehended to be the prime reason for luminescence enhancement upon interaction with the targeted analyte which was further validated from DFT calculations. In continuation, the PSM-MOFs were equally responsive towards 1,4-dioxane in several complex environmental matrices and cosmetic products. Additionally, vapor phase detection of 1,4-dioxane using PSM-MOFs has also been demonstrated as an additional advantage ensuring propagation of future research endeavour.


Assuntos
Dioxanos/química , Dioxanos/isolamento & purificação , Gases/química , Compostos Organometálicos/química , Água/química , Aminas , Cádmio/química , Dioxanos/toxicidade , Poluentes Ambientais/química , Modelos Moleculares , Estrutura Molecular
14.
Biochem J ; 478(21): 3939-3955, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34693969

RESUMO

Galactinol synthase (GolS) catalyzes the key regulatory step in the biosynthesis of Raffinose Family Oligosaccharides (RFOs). Even though the physiological role and regulation of this enzyme has been well studied, little is known about active site amino acids and the structure-function relationship with substrates of this enzyme. In the present study, we investigate the active site amino acid and structure-function relationship for this enzyme. Using a combination of three-dimensional homology modeling, molecular docking along with a series of deletion, site-directed mutagenesis followed by in vitro biochemical and in vivo functional analysis; we have studied active site amino acids and their interaction with the substrate of chickpea and Arabidopsis GolS enzyme. Our study reveals that the GolS protein possesses GT8 family-specific several conserved motifs in which NAG motif plays a crucial role in substrate binding and catalytic activity of this enzyme. Deletion of entire NAG motif or deletion or the substitution (with alanine) of any residues of this motif results in complete loss of catalytic activity in in vitro condition. Furthermore, disruption of NAG motif of CaGolS1 enzyme disrupts it's in vivo cellular function in yeast as well as in planta. Together, our study offers a new insight into the active site amino acids and their substrate interaction for the catalytic activity of GolS enzyme. We demonstrate that NAG motif plays a vital role in substrate binding for the catalytic activity of galactinol synthase that affects overall RFO synthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/metabolismo , Galactosiltransferases , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico , Galactosiltransferases/química , Galactosiltransferases/metabolismo , Conformação Proteica , Domínios Proteicos
15.
Dalton Trans ; 50(25): 8657-8670, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34060577

RESUMO

Supramolecular luminescent frameworks with conjugated architectures exhibits interesting photophysical properties with phenomenal chemical and thermal stability. This has instigated global researchers towards its extensive application in toxic analyte detection and the formulation of anti-counterfeit materials. In correlation with this present scenario, luminescent metal-organic frameworks (LMOFs), possessing tailorable structural and functional properties and exceptional physicochemical features, have been categorized as emerging 'smart materials'. Interestingly, LMOFs have assisted in the rapid development of an effectual sensing platform and swift fabrication of anti-counterfeit materials on desirable substrates with the aid of 'Inkjet Printing', which is a viable, low-cost, and high-resolution technology. Inkjet printing is an excellent material deposition technique in the modern era owing to its easy settling over flexible substrates, simplistic emergence of large area image patterns with improved throughput, minimal cost, explicit resolution, and least waste generation. The present review provides state-of-the-art progress on LMOFs based (i) luminescent security ink fabrication with static and dynamic multinodal luminescent materials and (ii) sensory device formulation for the easy and instantaneous recognition of hazardous analytes through the 'Inkjet Printing' technology. This techno-chemical integration will be certainly beneficial to prevent the growth of counterfeit materials and monitor the bioaccumulation of hazardous analytes in our ecological system.

16.
ACS Omega ; 5(26): 15949-15961, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32656416

RESUMO

Two luminescent MOFs, Mn@MOF and Cd@MOF, have been reported herein, which are capable of selectively detecting 2,4,6-trinitrophenol (TNP), one of the potent organic water pollutants in the class of mutagenic explosive nitroaromatic compounds (epNACs). It is perceived that the d10-based Cd(II)-constituting MOF shows a better response in the realm of TNP-like nitroaromatic sensing in comparison to the d5-based Mn@MOF which may possess lower electron density over the conjugated building blocks. The sensing competences of these chemosensors have been explored by means of various spectroscopic experimentations, and it is observed that for both d5 and d10-containing MOFs, the initial fluorescence intensity is significantly quenched in response to an aqueous solution of TNP. However, Cd@MOF is more selective and sensitive toward TNP over several other epNACs than Mn@MOF. The high chemical stability of the MOF samples, as well as its amusing sensing efficiency of Cd@MOF, further instigated to investigate the sensing ability in various environmental specimens like soil and water culled from several zones of West Bengal, India.

17.
ACS Omega ; 5(12): 6576-6587, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32258893

RESUMO

An inimitable urea-based multichannel chemosensor, DTPH [1,5-bis-(2,6-dichloro-4-(trifluoromethyl)phenyl)carbonohydrazide], was examined to be highly proficient to recognize CN- based on the H-bonding interaction between sensor -NH moiety and CN- in aqueous medium with explicit selectivity. In the absorption spectral titration of DTPH, a new peak at higher wavelength was emerged in titrimetric analytical studies of CN- with the zero-order reaction kinetics affirming the substantial sensor-analyte interaction. The isothermal titration calorimetry (ITC) experiment further affirmed that the sensing process was highly spontaneous with the Gibbs free energy of -26 × 104 cal/mol. The binding approach between DTPH and CN- was also validated by more than a few experimental studies by means of several spectroscopic tools along with the theoretical calculations. A very low detection limit of the chemosensor toward CN- (0.15 ppm) further instigated to design an RGB-based sensory device based on the colorimetric upshots of the chemosensor in order to develop a distinct perception regarding the presence of innocuous or precarious level of the CN- in a contaminated solution. Moreover, the reversibility of the sensor in the presence of CN- and Hg2+ originated a logic gate mimic ensemble. Additionally, the real-field along with the in vitro CN- detection efficiency of the photostable DTPH was also accomplished by using various biological specimens.

18.
Nat Prod Res ; 34(15): 2208-2218, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30938170

RESUMO

A facile, atom-economic synthesis of isoxazilidino withaferin, a novel hybrid of withaferin A, has been accomplished via two-step reaction of nitrone synthesis followed by nitrone 1,3-dipolar cycloaddition. The reaction is highly chemoselective (preferential reaction only on one of the two double bonds present on withaferin A) and diastereoselective affording exclusively the cis-fused products. The structure was determined by detailed analysis of 1D, 2D NMR and mass spectral data.


Assuntos
Reação de Cicloadição , Isoxazóis/síntese química , Óxidos de Nitrogênio/química , Vitanolídeos/síntese química , Estrutura Molecular , Análise Espectral , Estereoisomerismo , Vitanolídeos/química
19.
Mol Divers ; 24(3): 627-639, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31183672

RESUMO

A facile, multicomponent (MCR) atom-economic synthesis of novel spiro-oxindolo pyrrolizidine adducts of piperine has been achieved via an intermolecular 1,3-dipolar azomethine ylide cycloaddition reaction. Either of the two conjugated double bonds in piperine takes part in the reaction to produce two regioisomeric adducts in racemic form. Acenaphthoquinone, ninhydrin and different isatin derivatives were reacted with proline and piperine to afford a never before reported library of 22 compounds. The structures of the products were determined by 1D/2D NMR, mass spectral analysis and confirmed by X-ray crystallography of selected products. Chiral HPLC separation was performed to measure the specific rotation and CD spectra of the enantiomers for two racemic compounds.


Assuntos
Alcaloides/química , Compostos Azo/química , Benzodioxóis/química , Oxindóis/química , Oxindóis/síntese química , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Pirróis/química , Compostos de Espiro/química , Tiossemicarbazonas/química , Reação de Cicloadição , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
20.
J Biol Chem ; 295(3): 783-799, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31831624

RESUMO

Stressful environments accelerate the formation of isoaspartyl (isoAsp) residues in proteins, which detrimentally affect protein structure and function. The enzyme PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) repairs other proteins by reverting deleterious isoAsp residues to functional aspartyl residues. PIMT function previously has been elucidated in seeds, but its role in plant survival under stress conditions remains undefined. Herein, we used molecular, biochemical, and genetic approaches, including protein overexpression and knockdown experiments, in Arabidopsis to investigate the role of PIMTs in plant growth and survival during heat and oxidative stresses. We demonstrate that these stresses increase isoAsp accumulation in plant proteins, that PIMT activity is essential for restricting isoAsp accumulation, and that both PIMT1 and PIMT2 play an important role in this restriction and Arabidopsis growth and survival. Moreover, we show that PIMT improves stress tolerance by facilitating efficient reactive oxygen species (ROS) scavenging by protecting the functionality of antioxidant enzymes from isoAsp-mediated damage during stress. Specifically, biochemical and MS/MS analyses revealed that antioxidant enzymes acquire deleterious isoAsp residues during stress, which adversely affect their catalytic activities, and that PIMT repairs the isoAsp residues and thereby restores antioxidant enzyme function. Collectively, our results suggest that the PIMT-mediated protein repair system is an integral part of the stress-tolerance mechanism in plants, in which PIMTs protect antioxidant enzymes that maintain proper ROS homeostasis against isoAsp-mediated damage in stressful environments.


Assuntos
Antioxidantes/química , Arabidopsis/química , Estresse Oxidativo/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Sequência de Aminoácidos/genética , Antioxidantes/metabolismo , Arabidopsis/enzimologia , Temperatura Alta , Ácido Isoaspártico/química , Ácido Isoaspártico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Proteômica , Espécies Reativas de Oxigênio/química , Sementes/química , Sementes/genética , Estresse Fisiológico/genética , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...