Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940763

RESUMO

A novel biomass-derived glucose-mediated one-pot multicomponent nitro-reductive cyclization method is presented for the direct synthesis of diverse pyrrole-fused heterocycles. The process involves two-component reactions of alkyl (NH)-pyrrole-2-carboxylates and 2-fluoronitroarenes, yielding pyrrolo[1,2-a]quinoxalin-4(5H)-ones, as well as three-component reactions utilizing (NH)-pyrroles, nitroarenes, and DMSO as carbon sources, resulting in various pyrrolo[1,2-a]quinoxaline derivatives. High yields were achieved with broad substrate scope and gram-scale synthesis capability, including pharmaceuticals featuring pyrroloquinoxaline scaffolds. The method's key innovation lies in enabling three or four reactions in a single-pot setup, previously unexplored in pyrrole chemistry. The simplicity of nitro group reduction by biomass-derived glucose ensures practical safety during scale-up, while mechanistic insights from control experiments reveal a new paradigm in pyrrole chemistry. The tandem process demonstrates low PMI values and high step and atom economies, aligning well with green chemistry principles.

2.
J Org Chem ; 89(1): 725-730, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38070168

RESUMO

A one-pot, tandem reductive annulation of 2-nitrobenzenesulfonamides with aldehydes to the synthesis of substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxides in the presence of sodium dithionite (Na2S2O4) is reported under mild conditions. The method involves in situ reduction of the nitro group followed by condensation with aldehydes to form an imine, which upon subsequent intramolecular cyclization forms the product under one-pot conditions. The protocol features use of inexpensive Na2S2O4 as the exclusive reagent, appreciable functional group tolerance, broad substrate scope, high product yields, and scalability.

3.
Beilstein J Org Chem ; 19: 771-777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346499

RESUMO

A mild, operationally convenient, and practical method for the synthesis of synthetically useful N-arylsulfonylimines from N-(arylsulfonyl)benzylamines using K2S2O8 in the presence of pyridine as a base is reported herein. In addition, a "one-pot" tandem synthesis of pharmaceutically relevant N-heterocycles by the reaction of N-arylsulfonylimines, generated in situ with ortho-substituted anilines is also reported. The key features of the protocol include the use of a green oxidant, a short reaction time (30 min), chromatography-free isolation, scalability, and economical, delivering N-arylsulfonylimines in excellent yields of up to 96%. While the oxidation of N-aryl(benzyl)amines to N-arylimines using K2S2O8 is reported to be problematic, the oxidation of N-(arylsulfonyl)benzylamines to N-arylsulfonylimines using K2S2O8 has been achieved for the first time. The dual role of the sulfate radical anion (SO4·-), including hydrogen atom abstraction (HAT) and single electron transfer (SET), is proposed to be involved in the plausible reaction mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...