Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 9(1): 175-180, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29629085

RESUMO

The most commonly observed phenomena in carbon nanodots (CNDs) are the strong excitation wavelength dependent multicolor fluorescence emission and the particle size distribution between 3-5 nm observed using a transmission electron microscope (TEM). However, it is not evident yet whether the emission originates from the particles observed using a TEM. In this article, we show that hydrothermal treatment of citric acid produces methylenesuccinic acid, which gives rise to hydrogen-bonded nano-assemblies with CND-like properties. While single crystal X-ray crystallography confirms the structure of methylenesuccinic acid, fluorescence correlation spectroscopy (FCS) confirms the presence of a molecular fluorophore with an average hydrodynamic diameter of ∼0.9 nm. This size is much smaller than the size of the particles observed using a TEM. We conclude that the particles observed using a TEM are the drying mediated nanocrystals of methylenesuccinic acid.

2.
J Phys Chem A ; 120(4): 562-75, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26731551

RESUMO

The decomposition of isolated carbonic acid (H2CO3) molecule into CO2 and H2O (H2CO3 → CO2 + H2O) is prevented by a large activation barrier (>35 kcal/mol). Nevertheless, it is surprising that the detection of the H2CO3 molecule has not been possible yet, and the hunt for the free H2CO3 molecule has become challenging not only in the Earth's atmosphere but also on Mars. In view of this fact, we report here the high levels of quantum chemistry calculations investigating both the energetics and kinetics of the OH radical-initiated H2CO3 degradation reaction to interpret the loss of the H2CO3 molecule in the Earth's atmosphere. It is seen from our study that proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) are the two mechanisms by which the OH radical initiates the degradation of the H2CO3 molecule. Moreover, the PCET mechanism is potentially the important one, as the effective barrier, defined as the difference between the zero point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, for the PCET mechanism at the CCSD(T)/6-311++G(3df,3pd) level of theory is ∼3 to 4 kcal/mol lower than the effective barrier height associated with the HAT mechanism. The CCSD(T)/6-311++G(3df,3pd) level predicted effective barrier heights for the degradations of the two most stable conformers of H2CO3 molecule via the PCET mechanism are only ∼2.7 and 4.3 kcal/mol. A comparative reaction rate analysis at the CCSD(T)/6-311++G(3df,3pd) level of theory has also been carried out to explore the potential impact of the OH radical-initiated H2CO3 degradation relative to that from water (H2O), formic acid (FA), acetic acid (AA) and sulfuric acid (SA) assisted H2CO3 → CO2 + H2O decomposition reactions in both the Earth's troposphere and stratosphere. The comparison of the reaction rates reveals that, although the atmospheric concentration of the OH radical is substantially lower than the concentrations of the H2O, FA, AA in the Earth's atmosphere, nevertheless, the OH radical-initiated H2CO3 degradation reaction has significant impact, especially toward the loss of the H2CO3 molecule in the Earth's atmosphere. In clean environments, which exist in greater numbers in comparison to the polluted environments of the Earth's atmosphere, the impact of the OH radical-initiated H2CO3 degradation reaction is seen to be comparable to that from a competing pathway which utilizes hydrogen bonded molecules such as H2O, FA or AA to catalyze the H2CO3 decomposition. Similarly, in the polluted environments, and especially in the Earth's troposphere, although the reactions rates for the OH radical-initiated H2CO3 degradation and FA-assisted H2CO3 decomposition are comparable within a factor of ∼15, nevertheless, the AA-assisted H2CO3 decomposition reaction is appeared to be the dominant channel. This follows only because of slightly greater catalytic efficiency of the AA over FA upon the H2CO3 → CO2 + H2O decomposition reaction. In contrary, although the catalytic efficiencies of SA, FA, and AA upon the H2CO3 decomposition reaction are similar to each other and the concentrations of both the SA and OH radical in the Earth's atmosphere are more-or-less equal to each other, but nevertheless, the SA-assisted H2CO3 decomposition reaction cannot compete with the OH radical-initiated H2CO3 degradation reaction.

3.
J Phys Chem A ; 118(26): 4620-30, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24878165

RESUMO

The cis-cis [(cc)] and cis-trans [(ct)] conformers of carbonic acid (H2CO3) are known as the two most stable conformers based on the different orientations of two OH functional groups present in the molecule. To explain the interconversion of the (cc)-conformer to its (ct)-conformer, the rotation of one of the two indistinguishable OH functional groups present in the (cc)-conformer has been shown until now as the effective isomerization mechanism. Moreover, the (ct)-conformer, which is slightly energetically disfavored over the (cc)-conformer, has been considered as the starting point for the decomposition of H2CO3 into CO2 and H2O molecules. Experimentally, on the other hand, the infrared (IR) and Raman spectroscopy of the crystalline H2CO3 polymorphs suggest that the most possible basic building blocks of H2CO3 polymorphs consist of only and exclusively the (cc)-conformers. However, the sublimations of these crystalline H2CO3 polymorphs result both the (cc)- and (ct)-conformers in the vapor phase with the (cc)-conformer being the major species. In this article, we first report the high level ab initio calculations investigating the energetics of the autocatlytic isomerization mechanism between the two most stable conformers of carbonic acid in the vapor phase. The calculations have been performed at the MP2 level of theory in conjunction with aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(3df,3pd) basis sets. The results of the present study specifically and strongly suggest that double hydrogen transfer within the eight-membered cyclic doubly hydrogen-bonded (H-bonded) ring interface of the H2CO3 homodimer formed between two (cc)-conformers is ultimately the starting mechanism for the isomerization of the (cc)-conformer to its (ct)-conformer, especially, during the sublimation of the H2CO3 polymorphs, which result in the vapor phase concentration of the (cc)-conformer at the highest levels.

4.
J Phys Chem A ; 118(23): 4095-105, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24831426

RESUMO

The hydrolysis of glyoxal involving one to three water molecules and also in the presence of a water molecule and formic acid has been investigated. Our results show that glyoxal-diol is the major product of the hydrolysis and that formic acid, through its ability to facilitate intermolecular hydrogen atom transfer, is considerably more efficient than water as a catalyst in the hydrolysis process. Additionally, once the glyoxal-diol is formed, the barrier for further hydrolysis to form the glyoxal-tetrol is effectively reduced to zero in the presence of a single water and formic acid molecule. There are two important implications arising from these findings. First, the results suggest that under the catalytic influence of formic acid, glyoxal hydrolysis can impact the growth of atmospheric aerosols. As a result of enhanced hydrogen bonding, mediated through their polar OH functional groups, the diol and tetrol products are expected to have significantly lower vapor pressure than the parent glyoxal molecule; hence they can more readily partition into the particle phase and contribute to the growth of secondary organic aerosols. In addition, our findings provide insight into how glyoxal-diol and glyoxal-tetrol might be formed under atmospheric conditions associated with water-restricted environments and strongly suggest that the formation of these precursors for secondary organic aerosol growth is not likely restricted solely to the bulk aqueous phase as is currently assumed.


Assuntos
Atmosfera/química , Formiatos/química , Glioxal/química , Água/química , Aerossóis , Catálise , Hidrogênio/química , Ligação de Hidrogênio , Hidrólise
5.
J Phys Chem A ; 118(13): 2385-92, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24617952

RESUMO

In this article, we present high level ab initio calculations investigating the energetics of a new autocatalytic decomposition mechanism for carbonic acid (H2CO3) in the vapor phase. The calculation have been performed at the MP2 level of theory in conjunction with aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(3df,3pd) basis sets as well as at the CCSD(T)/aug-cc-pVTZ level. The present study suggests that this new decomposition mechanism is effectively a near-barrierless process at room temperature and makes vapor phase of H2CO3 unstable even in the absence of water molecules. Our calculation at the MP2/aug-cc-pVTZ level predicts that the effective barrier, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, is nearly zero for the autocatalytic decomposition mechanism. The results at the CCSD(T)/aug-cc-pVTZ level of calculations suggest that the effective barrier, as defined above, is sensitive to some extent to the levels of calculations used, nevertheless, we find that the effective barrier height predicted at the CCSD(T)/aug-cc-pVTZ level is very small or in other words the autocatalytic decomposition mechanism presented in this work is a near-barrierless process as mentioned above. Thus, we suggest that this new autocatalytic decomposition mechanism has to be considered as the primary mechanism for the decomposition of carbonic acid, especially at its source, where the vapor phase concentration of H2CO3 molecules reaches its highest levels.

6.
J Phys Chem A ; 117(46): 11704-10, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23614454

RESUMO

We find that formic acid (FA) is very effective at facilitating diol formation through its ability to reduce the barrier for the formaldehyde (HCHO) hydrolysis reaction. The rate limiting step in the mechanism involves the isomerization of a prereactive collision complex formed through either the HCHO···H2O + FA and/or HCHO + FA···H2O pathways. The present study finds that the effective barrier height, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state (TS) and the HCHO···H2O + FA and HCHO + FA···H2O starting reagents, are respectively only ∼1 and ∼4 kcal/mol. These barriers are substantially lower than the ∼17 kcal/mol barrier associated with the corresponding step in the hydrolysis of HCHO catalyzed by a single water molecule (HCHO + H2O + H2O). The significantly lower barrier heights for the formic acid catalyzed pathway reveal a new important role that organic acids play in the gas phase hydrolysis of atmospheric carbonyl compounds.

7.
J Chem Phys ; 137(6): 064319, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22897285

RESUMO

Quantum chemistry calculations at the density functional theory (DFT) (B3LYP), MP2, QCISD, QCISD(T), and CCSD(T) levels in conjunction with 6-311++G(2d,2p) and 6-311++G(2df,2p) basis sets have been performed to explore the binding energies of open-shell hydrogen bonded complexes formed between the HOCO radical (both cis-HOCO and trans-HOCO) and trans-HCOOH (formic acid), H(2)SO(4) (sulfuric acid), and cis-cis-H(2)CO(3) (carbonic acid). Calculations at the CCSD(T)∕6-311++G(2df,2p) level predict that these open-shell complexes have relatively large binding energies ranging between 9.4 to 13.5 kcal∕mol and that cis-HOCO (cH) binds more strongly compared to trans-HOCO in these complexes. The zero-point-energy-corrected binding strengths of the cH⋯Acid complexes are comparable to that of the formic acid homodimer complex (∼13-14 kcal∕mol). Infrared fundamental frequencies and intensities of the complexes are computed within the harmonic approximation. Infrared spectroscopy is suggested as a potential useful tool for detection of these HOCO⋯Acid complexes in the laboratory as well as in various planetary atmospheres since complex formation is found to induce large frequency shifts and intensity enhancement of the H-bonded OH stretching fundamental relative to that of the corresponding parent monomers. Finally, the ability of an acid molecule such as formic acid to catalyze the inter-conversion between the cis- and trans-HOCO isomers in the gas phase is also discussed.

8.
J Phys Chem A ; 116(24): 5784-95, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21988092

RESUMO

Vapor phase absorption spectra and integrated band intensities of the OH stretching fundamental as well as first and second overtones (2ν(OH) and 3ν(OH)) in peroxyacetic acid (PAA) have been measured using a combination of FT-IR and photoacoustic spectroscopy. In addition, ab initio calculations have been carried out to examine the low energy stable conformers of the molecule. Spectral assignment of the primary features appearing in the region of the 2ν(OH) and 3ν(OH) overtone bands are made with the aid of isotopic substitution and anharmonic vibrational frequency calculations carried out at the MP2/aug-cc-pVDZ level. Apart from features associated with the zeroth-order OH stretch, the overtone spectra are dominated by features assigned to combination bands composed of the respective OH stretching overtone and vibrations involving the collective motion of several atoms in the molecule resulting from excitation of the internal hydrogen bonding coordinate. Integrated absorption cross section measurements reveal that internal hydrogen bonding, the strength of which is estimated to be ∼20 kJ/mol in PAA, does not result in a enhanced oscillator strength for the OH stretching fundamental of the molecule, as is often expected for hydrogen bonded systems, but does cause a precipitous drop in the oscillator strength of its 2ν(OH) and 3ν(OH) overtone bands, reducing them, respectively, by a factor of 165 and 7020 relative to the OH stretching fundamental.


Assuntos
Radical Hidroxila/química , Ácido Peracético/química , Ligação de Hidrogênio , Conformação Molecular , Teoria Quântica , Vibração
9.
J Am Chem Soc ; 133(43): 17444-53, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21932843

RESUMO

Computational studies at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels are performed to explore the changes in reaction barrier height for the gas phase hydrolysis of SO(3) to form H(2)SO(4) in the presence of a single formic acid (FA) molecule. For comparison, we have also performed calculations for the reference reaction involving water assisted hydrolysis of SO(3) at the same level. Our results show that the FA assisted hydrolysis of SO(3) to form H(2)SO(4) is effectively a barrierless process. The barrier heights for the isomerization of the SO(3)···H(2)O···FA prereactive collision complex, which is the rate limiting step in the FA assisted hydrolysis, are found to be respectively 0.59 and 0.08 kcal/mol at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels. This is substantially lower than the ~7 kcal/mol barrier for the corresponding step in the hydrolysis of SO(3) by two water molecules--which is currently the accepted mechanism for atmospheric sulfuric acid production. Simple kinetic analysis of the relative rates suggests that the reduction in barrier height facilitated by FA, combined with the greater stability of the prereactive SO(3)···H(2)O···FA collision complex compared to SO(3)···H(2)O···H(2)O and the rather plentiful atmospheric abundance of FA, makes the formic acid mediated hydrolysis reaction a potentially important pathway for atmospheric sulfuric acid production.


Assuntos
Atmosfera/química , Formiatos/química , Teoria Quântica , Óxidos de Enxofre/química , Ácidos Sulfúricos/síntese química , Catálise , Gases/química , Hidrólise , Ácidos Sulfúricos/química
10.
J Phys Chem A ; 115(21): 5294-306, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21553873

RESUMO

The gas phase spectra of several vibrational bands of peroxyformic acid (PFA), an atmospheric molecule exhibiting intramolecular hydrogen bonding, are presented. In the fundamental region, Fourier transform infrared (FT-IR) spectroscopy is used to probe the C-O, O-H and C-H stretching vibrations, while in the region of the first and second OH-stretching overtones (2ν(OH) and 3ν(OH)) photoacoustic spectroscopy is used. Integrated absorption cross sections for the PFA vibrational bands are determined by comparing their respective peak areas with that for the OH-stretching bands of n-propanol for which the absorption cross section is known. The measured integrated intensities of the OH stretching bands are then compared with a local mode model using a one-dimensional dipole moment function in conjunction with the OH stretching potential computed at both the MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels. The data allow us to investigate changes in the OH stretch band position and intensity as a function of overtone order arising from the influence of hydrogen bonding. Furthermore, calculations at the MP2/aug-cc-pVDZ level show that there are three stable conformers of PFA with relative energies of 0, 13.54, and 13.76 kJ/mol, respectively. In the room temperature spectra, however, we see evidence for transitions from only the lowest energy conformer. The geometrical parameters and vibrational frequencies of the most stable conformer are presented.


Assuntos
Atmosfera/química , Formiatos/química , Hidróxidos/química , Ligação de Hidrogênio , Estrutura Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Integração de Sistemas
11.
J Phys Chem A ; 112(6): 1100-4, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18205339

RESUMO

We have presented in this paper the laser-induced fluorescence excitation and resolved fluorescence spectra of five 1:1 hydrogen-bonded complexes of 2-pyridone (2PY) with formic acid (FA), acetic acid (AA), propanoic acid (PA), formamide (FM), and acetamide (AM). The resolved fluorescence spectra, measured following excitation to different single vibronic levels of the dimers indicate that the intermolecular hydrogen bond vibrations undergo mixing with a number of intramolecular modes of the 2PY moiety in the excited state. A comparison of the emission spectral features of these dimers clearly indicates that the methyl groups belonging to the AA and AM moieties spectacularly accelerate the vibrational energy redistribution (IVR) in the 2PY moiety. On the other hand, although the molecular size of PA is bigger than AA, the spectral features of the 2PY-PA dimer bear signatures of a slower IVR rate compared to those of 2PY-AA. We propose that hyperconjugation of the methyl group with the cyclic hydrogen-bonded network involving AA and AM is responsible for the observed phenomenon.

12.
J Phys Chem A ; 111(32): 7813-8, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17637047

RESUMO

We report here the laser induced fluorescence excitation (FE) and dispersed fluorescence (DF) spectra of a 1:1 mixed dimer between 7-azaindole (7AI) and 2-pyridone (2PY) measured in a supersonic free jet expansion of helium. Density functional theoretical calculation at the B3LYP/6-311++G** level has been performed for predictions of the dimer geometry and normal mode vibrational frequencies in the ground electronic state. A planar doubly hydrogen-bonded structure has been predicted to be the most preferred geometry of the dimer. In the FE spectrum, sharp vibronic bands are observed only for excitation of the 2PY moiety. A large number of low-frequency vibronic bands show up in both the FE and DF spectra, and those bands have been assigned to in-plane hydrogen bond vibrations of the dimer. Spectral analyses reveal Duschinsky-type mixing among those modes in the excited state. No distinct vibronic band structure in the FE spectrum was observed corresponding to excitations of the 7AI moiety, and the observation has been explained in terms of nonradiative electronic relaxation routes involving the 2PY moiety.

13.
J Chem Phys ; 125(21): 214302, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17166016

RESUMO

The vibronically resolved electronic spectra for S(1)<-->S(0) transitions of a mixed dimer between 2-pyridone (2PY) and formamide have been measured in a supersonic free jet expansion using laser-induced fluorescence spectroscopy. Quantum chemistry method at different levels of theory has been used to optimize the geometries of the dimer for the S(0) and S(1) electronic states and also to calculate the normal vibrational modes. Assignments for the vibronic bands observed in the dispersed fluorescence spectrum of the 0(0) (0) band have been suggested with the aid of the ground state frequencies calculated by density functional theoretical method. Spectral analysis reveals that electronic excitation causes extensive mixing of the low-frequency intermolecular vibrational modes of the dimer with some of the intramolecular modes of the 2PY moiety. This spectral behavior is consistent with the complete active space self-consistent field theoretical prediction that with respect to a number of geometrical parameters the dimer geometry in S(1) is significantly distorted from the geometry of the S(0) state.

14.
J Phys Chem A ; 110(29): 9130-6, 2006 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-16854025

RESUMO

A 1:1 hydrogen-bonded complex between 2-pyridone and formic acid has been characterized using laser-induced-fluorescence excitation and dispersed fluorescence spectroscopy in a supersonic jet expansion. Under the same expansion condition, the fluorescence signal of the tautomeric form of the complex (2-hydroxypyridine...formic acid) is absent, although both the bare tautomeric molecules exhibit well-resolved laser-induced-fluorescence spectra. Quantum chemistry calculation at the DFT/B3LYP/6-311++G** level predicts that in the ground electronic state the activation barrier for tautomerization from hydroxy to keto form in bare molecules is very large (approximately 34 kcal/mol). However, the process turns out to be nearly barrierless when assisted by formic acid, and double proton transfer occurs via a concerted mechanism.


Assuntos
Formiatos/química , Piridonas/química , Catálise , Elétrons , Isomerismo , Modelos Moleculares , Conformação Molecular , Espectrometria de Fluorescência
15.
J Phys Chem A ; 109(33): 7621-5, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16834133

RESUMO

Formic acid catalyzed tautomeric conversion of formamide to formamidic acid has been investigated by use of ab initio and density functional theoretical calculations. In a 1:1 dimeric complex between formamide and formic acid, the tautomeric conversion occurs via double-hydrogen transfer within an eight-member hydrogen-bonded cyclic network. The results predict that the energy barrier of the catalytic process is reduced by more than a factor of 4 compared to that in the isolated formamide molecule in the gas phase, and the tautomerization in the 1:1 complex is several kcal/mol less endothermic than that of the isolated molecule. The potential energy surface corresponding to this double hydrogen transfer process indicates that a concerted transfer of both the hydrogen atoms along the hydrogen bond directions is energetically favorable, and no minimum for an ionic intermediate, which may arise for stepwise transfer, was predicted. The unique configuration of the transition state has been identified by starting the reaction from both the tautomeric forms, and the transition state was subjected to IRC calculation.

16.
J Chem Phys ; 123(12): 124310, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16392485

RESUMO

The vibrational level splitting in the ground electronic state of carboxylic acid dimers mediated by the doubly hydrogen-bonded networks are investigated using pure and mixed dimers of benzoic acid with formic acid as molecular prototypes. Within the 0-2000-cm(-1) range, the frequencies for the fundamental and combination vibrations of the two dimers are experimentally measured by using dispersed fluorescence spectroscopy in a supersonic jet expansion. Density-functional-theory calculations predict that most of the dimer vibrations are essentially in-phase and out-of-phase combinations of the monomer modes, and many of such combinations show significantly large splitting in vibrational frequencies. The infrared spectrum of the jet-cooled benzoic acid dimer, reported recently by Bakker et al. [J. Chem. Phys. 119, 11180 (2003)], has been used along with the dispersed fluorescence spectra to analyze the coupled g-u vibrational levels. Assignments of the dispersed fluorescence spectra of the mixed dimer are suggested by comparing the vibronic features with those in the homodimer spectrum and the predictions of density-functional-theory calculation. The fluorescence spectra measured by excitations of the low-lying single vibronic levels of the mixed dimer reveal that the hydrogen-bond vibrations are extensively mixed with the ring modes in the S1 surface.

17.
J Chem Phys ; 121(16): 7562-4, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15485215

RESUMO

In this work we demonstrate that a doubly hydrogen-bonded interface of two carboxylic acid groups behaves as efficient conduit to transmit the rotor effects for IVR acceleration in a phenyl ring. The phenomenon has been demonstrated by measuring the resolved emission spectra following SVL excitations in S(1) of a 1:1 mixed dimer between acetic acid and benzoic acid. The role of the methyl rotor has been ascertained by comparing the results with those obtained for an analogous dimeric system between formic acid and benzoic acid.

18.
J Chem Phys ; 121(11): 5261-71, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15352819

RESUMO

Two conformational isomers of 3-fluorobenzoic acid dimer (3-FBA(2)) have been identified in a supersonic jet expansion by use of laser-induced fluorescence excitation (FE), UV-UV hole-burning, and dispersed fluorescence (DF) spectroscopic methods. In the FE spectrum, the S(1) origins of the two isomeric species appear at a frequency gap of only 24 cm(-1), and the vibronic intensities of the redshifted dimer (dimer I) are about two times weaker than those of dimer II. However, ab initio quantum chemistry calculations at the MP2/6-31G(**) level of theory predict that all the isomeric species of 3-FBA(2) have almost the same binding energy (approximately 17 kcal/mol) in the ground state. Furthermore, unlike benzoic acid dimer, the present system shows intense activity for a low-frequency mode in both the FE and DF spectra. With the aid of DFT (B3LYP/6-311G(**)) predicted normal mode frequencies, we have assigned the mode to the in-plane gear (cogwheel) vibration of the cyclic hydrogen-bonded frame of the dimer. The Franck-Condon profiles for vibronic excitation of the mode indicate that the distortion of the cyclic hydrogen bond frame as a result of S(1)<--S(0) excitation is larger for dimer I than dimer II. Moreover, the fluorescence lifetime at the S(1) zero-point level of the former is also significantly smaller than the latter. Using the predictions of configuration interaction singles calculations, we have proposed that the spectral and dynamical differences between the two isomeric species observed in this study are manifestations of the different characteristics of their S(1) surfaces. By measuring FE, DF, and hole-burning spectra of a mixed dimer between 3-fluobenzoic acid and benzoic acid we have shown that the isomeric features in the homodimer spectra are due to two locally excited rotamers of the 3-fluorobenzoic acid moiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...