Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Basic Clin Neurosci ; 14(2): 297-309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107533

RESUMO

Introduction: Video games affect the stress system and cognitive abilities in different ways. Here, we evaluated electrophysiological and biochemical indicators of stress and assessed their effects on cognition and behavioral indexes after playing a scary video game. Methods: Thirty volunteers were recruited into two groups as control and experimental. The saliva and blood samples were collected before and after intervention (watching/playing the scary game for control and experimental groups respectively). To measure cortisol and salivary alpha-amylase (sAA) levels, oxytocin (OT), and brain-derived neurotrophic factor (BDNF) plasma levels, dedicated ELISA kits were used. Electroencephalography recording was done before and after interventions for electroencephalogram (EEG)-based emotion and stress recognition. Then, the feature extraction (for mental stress, arousal, and valence) was done. Matrix laboratory (MATLAB) software, version 7.0.1 was used for processing EEG-acquired data. The repeated measures were applied to determine the intragroup significance level of difference. Results: Scary gameplay increases mental stress (P<0.001) and arousal (P<0.001) features and decreases the valence (P<0.001) one. The salivary cortisol and alpha-amylase levels were significantly higher after the gameplay (P<0.001 for both). OT and BDNF plasma levels decreased after playing the scary game (P<0.05 for both). Conclusion: We conclude that perceived stress considerably elevates among players of scary video games, which adversely affects the emotional and cognitive capabilities, possibly via the strength of synaptic connections, and dendritic thorn construction of the brain neurons among players. Highlights: The mental stress level increases in players of scary video games.The salivary cortisol and alpha-amylase levels are significantly higher after the scary gameplay.Plasma levels of oxytocin and brain-derived neurotrophic factor decrease after the scary gameplay.The arousal and valence features increase in players of scary video game.Cognitive capabilities are adversely affected by the scary gameplay. Plain Language Summary: Nowadays, video games have become an important part of human life at different ages. Therefore, assessing their effects (improving and/or damaging) on cognition and behavior is important for understanding how they affect the nervous system. The results of such studies can be used to design a variety of games in the future in a way that minimizes the harmful side effects of video games on human cognitive functions and maximizes their beneficial effects.

2.
Behav Brain Res ; 441: 114269, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574845

RESUMO

Cold intolerance is a debilitating effect of nerve injury, has a strong impact on the life of patients and no advisable treatment exists against it. Testosterone influences pain pathways and has analgesic effects. A recent study showed testosterone as being an agonist of TRPM8, the predominant ion channel that contributes to cold hypersensitivity after injury. We investigated the effect of testosterone on cold sensitivity after nerve injury. Specifically, using the double plate test (DPT) (thermo-neutral-plate: 31 ºC and cold-plate: 18 ºC) we determined the thermal preference of mice at different points during the study design consisting of: orchiectomy, tibial nerve transection (TNT) (30 days after orchiectomy), 15-days-repeated subcutaneous injections of testosterone enanthate (250 or 500 µg/kg/day) or vehicle (started 12 h after TNT surgery). Different parameters such as time spent on cold plates, distance traveled, animal speed on the cold- and thermo-neutral-plates were determined in naïve, sham and neuropathic animals. Neither orchiectomy nor sham TNT surgery generate effects on cold intolerance and animal activity while TNT surgery decreased the time spent on the cold-plate and the distance traveled during DPT. Testosterone administration reversed the effect of nerve injury, decreasing the cold hypersensitivity and increasing activity of TNT mice. However, the effect of testosterone on cold avoidance reduced with time and at 14 days after TNT surgery, a higher dose was needed to reverse the effect generated by nerve injury. This indicates that although testosterone administration has a positive effect on cold intolerance, it might not be suitable for prolongated treatment.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Doenças do Sistema Nervoso Periférico , Camundongos , Animais , Dor , Nervo Tibial/lesões , Testosterona/farmacologia , Temperatura Baixa , Hiperalgesia/tratamento farmacológico
3.
Eur J Pharmacol ; 834: 221-229, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30009812

RESUMO

It seems that histamine release in the site of neuronal injury could contribute to the neuropathic pain mechanism. In the present study, we investigated the anti-allodynic effects of chronic administration of different classes of histamine H1 and H2 receptor antagonists on neuropathic nociceptive behavior following tibial nerve transection (TNT) in rats. Peripheral neuropathy was induced by TNT surgery. We performed acetone tests (AT) to record cold allodynia, Von Frey tests (VFT) to measure mechanical allodynia, double plate test (DPT) to evaluate thermal place preference/avoidance and open field test (OFT) for evaluation of animal activity. TNT rats showed a significant mechanical and cold allodynia compared to the sham group. Chlorpheniramine (5 and 15 mg/kg, i.p) significantly attenuated cold allodynia and prevented cold plate avoidance behavior and at the dose of 15 mg/kg remarkably decreased mechanical allodynia. Fexofenadine (10 and 30 mg/kg, p.o) significantly attenuated the mechanical allodynia and prevented cold plate avoidance. Ranitidine (5 and 15 mg/kg, i.p) significantly prevented cold plate avoidance behavior and at the dose of 15 mg/kg notably improved mechanical and cold allodynia. Famotidine (1 and 3 mg/kg, p.o) was ineffective on all nociceptive tests. Gabapantin (100 mg/kg, p.o) significantly improved all types of nociceptive behaviors. These results indicate that both blood brain barrier penetrating (chlorpheniramine) and poorly penetrating (fexofenadine) histamine H1 receptor antagonists could improve the neuropathic pain sign, but only the blood brain barrier penetrating histamine H2 receptor antagonist (ranitidine) could produce anti-allodynic effects in the TNT model of neuropathic pain in rats.


Assuntos
Antagonistas dos Receptores Histamínicos/farmacologia , Neuralgia/fisiopatologia , Nociceptividade/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/complicações , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Nervo Tibial/lesões , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Reação de Fuga/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H1/farmacologia , Antagonistas dos Receptores H2 da Histamina/farmacologia , Hiperalgesia/complicações , Masculino , Neuralgia/complicações , Neuralgia/etiologia , Neuralgia/metabolismo , Ratos , Ratos Wistar
4.
Res Pharm Sci ; 11(4): 293-302, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27651809

RESUMO

Clinical studies suggest that essential oil of Eugenia caryophyllata (Clove) buds (EOEC) is efficacious in the treatment of dental pain. In the present study, we investigated the analgesic and local anesthetic effects of EOEC and its possible mechanisms of action in acute corneal pain in rats. EOEC was extracted by hydro-distillation in a Clevenger type apparatus from clove buds. The acute corneal pain was induced by applying a drop (40 µl) of 5 M NaCl solution on the corneal surface, and the numbers of eye wipes were counted during the first 30 s. The mechanical sensation of the cornea was evaluated by calibrated Von Frey filaments. Systemic administration of EOEC (100 and 200 mg/kg, SC) and morphine (2.5 and 5 mg/kg, IP) produced a significant antinociceptive effect in acute corneal pain. Pretreatment with naloxone or atropine prevented the EOEC-induced analgesia. However, L-arginine and methylene blue did not change the suppressive effect of EOEC on corneal pain response. Topical application of EOEC, eugenol and lidocaine significantly decreased corneal sensitivity. Combination treatments of eugenol (25 µg) with lidocaine (0.5%) and EOEC (50 µg) with lidocaine (0.5%) also significantly suppressed corneal sensitivity. Systemic administration of EOEC produced analgesia in the acute corneal pain through mechanisms that involved both opioidergic and cholinergic systems. In addition, topical instillation of EOEC, eugenol, and lidocaine produced local anesthesia in the rat cornea. Sub-anesthetic doses of EOEC or eugenol produced a significant local anesthetic effect when concurrently used with the sub-anesthetic dose of lidocaine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...