Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(20)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37887272

RESUMO

Traumatic brain injury usually triggers glial scar formation, neuroinflammation, and neurodegeneration. However, the molecular mechanisms underlying these pathological features are largely unknown. Using a mouse model of hippocampal stab injury (HSI), we observed that miR-331, a brain-enriched microRNA, was significantly downregulated in the early stage (0-7 days) of HSI. Intranasal administration of agomir-331, an upgraded product of miR-331 mimics, suppressed reactive gliosis and neuronal apoptosis and improved cognitive function in HSI mice. Finally, we identified IL-1ß as a direct downstream target of miR-331, and agomir-331 treatment significantly reduced IL-1ß levels in the hippocampus after acute injury. Our findings highlight, for the first time, agomir-331 as a pivotal neuroprotective agent for early rehabilitation of HSI.


Assuntos
Lesões Encefálicas Traumáticas , MicroRNAs , Humanos , Gliose , Doenças Neuroinflamatórias , Inflamação/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , MicroRNAs/genética
2.
Cells ; 12(4)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36831225

RESUMO

Traumatic brain injury usually results in neuronal loss and cognitive deficits. Promoting endogenous neurogenesis has been considered as a viable treatment option to improve functional recovery after TBI. However, neural stem/progenitor cells (NSPCs) in neurogenic regions are often unable to migrate and differentiate into mature neurons at the injury site. Transglutaminase 2 (TGM2) has been identified as a crucial component of neurogenic niche, and significantly dysregulated after TBI. Therefore, we speculate that TGM2 may play an important role in neurogenesis after TBI, and strategies targeting TGM2 to promote endogenous neural regeneration may be applied in TBI therapy. Using a tamoxifen-induced Tgm2 conditional knockout mouse line and a mouse model of stab wound injury, we investigated the role and mechanism of TGM2 in regulating hippocampal neurogenesis after TBI. We found that Tgm2 was highly expressed in adult NSPCs and up-regulated after TBI. Conditional deletion of Tgm2 resulted in the impaired proliferation and differentiation of NSPCs, while Tgm2 overexpression enhanced the abilities of self-renewal, proliferation, differentiation, and migration of NSPCs after TBI. Importantly, injection of lentivirus overexpressing TGM2 significantly promoted hippocampal neurogenesis after TBI. Therefore, TGM2 is a key regulator of hippocampal neurogenesis and a pivotal therapeutic target for intervention following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Neurogênese , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , Camundongos , Lesões Encefálicas Traumáticas/fisiopatologia , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos Knockout , Células-Tronco Neurais , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo
3.
Biology (Basel) ; 11(9)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36138848

RESUMO

Traumatic brain injury (TBI) is closely associated with the later development of neurodegenerative and psychiatric diseases which are still incurable. Although various animal TBI models have been generated, they usually have weaknesses in standardization, survivability and/or reproducibility. In the present study, we investigated whether applying a blade penetrating stab wound to the hippocampus would create an animal model of cognitive deficits. Open-field, Morris water maze and Barnes maze tests were used to evaluate the animal behaviors. The immunofluorescence staining of NeuN, GFAP, IBA1, and TUNEL was conducted to analyze the changes in neurons, astrocytes, and microglia, as well as cell death. Mice with a hippocampal blade stab injury (HBSI) displayed the activation of microglia and astrocytes, inflammation, neuronal apoptosis, and deficits in spatial learning and memory. These findings suggest that HBSI is an easy approach to generate a reliable in vivo model of TBI to capture hemorrhage, neuroinflammation, reactive gliosis, and neural death, as well as cognitive deficits observed in human patients.

4.
Mol Psychiatry ; 27(7): 2999-3009, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35484239

RESUMO

The embryonic ectoderm development (EED) is a core component of the polycomb-repressive complex 2 (PRC2) whose mutations are linked to neurodevelopmental abnormalities, intellectual disability, and neurodegeneration. Although EED has been extensively studied in neural stem cells and oligodendrocytes, its role in microglia is incompletely understood. Here, we show that microglial EED is essential for synaptic pruning during the postnatal stage of brain development. The absence of microglial EED at early postnatal stages resulted in reduced spines and impaired synapse density in the hippocampus at adulthood, accompanied by upregulated expression of phagocytosis-related genes in microglia. As a result, deletion of microglial Eed impaired hippocampus-dependent learning and memory in mice. These results suggest that microglial EED is critical for normal synaptic and cognitive functions during postnatal development.


Assuntos
Microglia , Células-Tronco Neurais , Animais , Hipocampo/metabolismo , Camundongos , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Sinapses/metabolismo
5.
Glia ; 69(5): 1292-1306, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33492723

RESUMO

Neurotrauma has been recognized as a risk factor for neurodegenerative diseases, and sex difference of the incidence and outcome of neurodegenerative diseases has long been recognized. Past studies suggest that microglia could play a versatile role in both health and disease. So far, the microglial mechanisms underlying neurodegeneration and potentially lead to sex-specific therapies are still very open. Here we applied whole transcriptome analysis of microglia acutely isolated at different timepoints after a cortical stab wound injury to gain insight into genes that might be dysregulated and transcriptionally different between males and females after cortical injury. We found that microglia displayed distinct temporal and sexual molecular signatures of transcriptome after cortical injury. Hypotheses and gene candidates that we presented in the present study could be worthy to be examined to explore the roles of microglia in neurotrauma and in sex-biased neurodegenerative diseases.


Assuntos
Microglia , Doenças Neurodegenerativas , Encéfalo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Doenças Neurodegenerativas/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...