Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 96(8): 3264-3273, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29741632

RESUMO

The aim of this study was to investigate the effects of dietary supplementation with guanidinoacetic acid (GAA) on the growth performance, creatine and energy metabolism, and carcass characteristics in growing-finishing pigs. In Exp. 1, Duroc × Landrace × Yorkshire pigs (n = 180, 33.61 ± 3.91 kg average BW) were blocked by weight and sex, and allotted to 5 treatments with 6 replicates (3 gilts and 3 barrows per replicate pen). Diets were corn-soybean meal-basal diets supplemented with 0, 300, 600, 900, and 1,200 mg/kg of GAA and fed to the pigs for 98 d. From days 1 to 98, G:F increased (linear, P < 0.05) with increasing addition of dietary GAA. Using a broken-line model, the optimum level of dietary GAA was 300 mg/kg during the overall experimental period (days 1 to 98) to maximize G:F. Hot carcass weight, carcass length, and lean percentage showed a tendency to increase (quadratic, 0.05 < P < 0.10) with increasing addition of dietary GAA. On day 98, serum GAA and liver creatine tended to increase (linear, P = 0.10, 0.07) as dietary GAA increased. In addition, serum ATP on day 98 increased linearly (linear, P < 0.01), and muscle ATP and adenosine monophosphate increased quadratically (quadratic, P = 0.05) with incremental GAA supplementation. In Exp. 2, Duroc × Landrace × Yorkshire pigs (n = 180, 53.19 ± 5.63 kg average BW) were blocked by weight and sex, and allotted to 5 treatments with 6 replicates (3 gilts and 3 barrows per replicate pen). Diets were corn-soybean meal-basal diets supplemented with 0, 150, 300, 600, and 1,200 mg/kg of GAA for 35 d. As dietary GAA increased, final BW, ADG, and G:F increased quadratically (quadratic, P < 0.01), and 300 mg/kg of GAA maximized ADG and final BW (P < 0.05).The results indicate that dietary GAA could increase the creatine and ATP load in the tissues of pigs and accordingly improve growth performance. Dietary supplementation with 300 mg/kg of GAA was suitable to maximize the growth performance of growing-finishing pigs.


Assuntos
Ração Animal/análise , Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Glicina/análogos & derivados , Suínos/fisiologia , Animais , Creatina/análise , Dieta/veterinária , Feminino , Glicina/sangue , Glicina/farmacologia , Fígado/metabolismo , Masculino , Glycine max , Suínos/crescimento & desenvolvimento , Zea mays
2.
Animal ; 11(1): 54-60, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27349347

RESUMO

Mitochondria plays an important role in the regulation of energy homeostasis. Moreover, mitochondrial biogenesis accompanies skeletal myogenesis, and we previously reported that maternal high-energy diet repressed skeletal myogenesis in pig fetuses. Therefore, the aim of this study was to evaluate the effects of moderately increased maternal energy intake on skeletal muscle mitochondrial biogenesis and function of the pig fetuses. Primiparous purebred Large White sows were allocated to a normal energy intake group (NE) as recommended by the National Research Council (NRC) and a high energy intake group (HE, 110% of NRC recommendations). On day 90 of gestation, fetal umbilical vein blood and longissimus (LM) muscle were collected. Results showed that the weight gain of sows fed HE diet was higher than NE sows on day 90 of gestation (P<0.05). Maternal HE diet increased fetal umbilical vein serum triglyceride and insulin concentrations (P<0.05), and tended to increase the homeostasis model assessment index (P=0.08). Furthermore, HE fetuses exhibited increased malondialdehyde concentration (P<0.05), and decreased activities of antioxidative enzymes (P<0.05) and intracellular NAD+ level (P<0.05) in LM muscle. These alterations in metabolic traits of HE fetuses were accompanied by reduced mitochondrial DNA amount (P<0.05) and down-regulated messenger RNA expression levels of genes responsible for mitochondrial biogenesis and function (P<0.05). Our results suggest that moderately increased energy supply during gestation decreases mitochondrial biogenesis, function and antioxidative capacity in skeletal muscle of pig fetuses.


Assuntos
Ração Animal/análise , Dieta/veterinária , Ingestão de Energia , Desenvolvimento Muscular/efeitos dos fármacos , Suínos/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal , Animais , Feminino , Insulina/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Músculo Esquelético/metabolismo , Biogênese de Organelas , RNA Mensageiro/metabolismo , Suínos/metabolismo , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...