Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1477-1480, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018270

RESUMO

Physiological parameters can be estimated from dynamic contrast enhanced magnetic resonance imaging (DCEMRI) data using pharmacokinetic models. This work evaluates the performance of various pharmacokinetic models through a retrospective study on cervix cancer, including two generalized kinetic models and three 2-compartment exchange models (2CXMs). In the current clinical practice, region of interest (ROI) is treated as a whole and the models are assessed by their top pharmacokinetic parameters. We explore the intervoxel relationship in the pharmacokinetic parameter maps and demonstrate that, for those insignificant parameters, texture descriptors can largely improve their discriminative power. Multi-parametric classifiers are developed to fuse the information carried by physiological parameters and the descriptors. Assessed merely by the top parameter, the DP (distributed parameter) model is the best one with an area under the ROC (receiver operating characteristic) curve (AUC) of 0.80; by combining multiple pharmacokinetic parameters, the ExTofts model is the winner with an AUC of 0.837. Finally, the classifier of the AATH (adiabatic approximation to the tissue homogeneity) model build on combined features achieves an AUC of 0.92.Clinical Relevance - Using data from 36 cervical cancer patients and 17 normal subjects, this work quantitatively compared the various pharmacokinetic models and provided recommendations for model selection in cervical cancer diagnosis.


Assuntos
Neoplasias do Colo do Útero , Meios de Contraste , Feminino , Humanos , Imageamento por Ressonância Magnética , Curva ROC , Estudos Retrospectivos
2.
Appl Opt ; 57(33): 9822-9827, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462017

RESUMO

A one-dimensional photonic crystal elliptical-hole tapered low-index-mode nanobeam cavity sensor fully encapsulated in a water environment is proposed. In the proposed structure, to confine the light in the low-index region and enhance the light-matter interaction, a tapered major axis of the elliptical hole away from the nanobeam cavities center is optimized. Through a three-dimensional finite-difference time-domain simulation, the results show that the low-index-mode of the middle geometry cell is confined in the photonic bandgap of two-sided cells. The highest quality factor of 6.04×105 is achieved when 13 tapered segments and 5 mirror segments are placed at both sides of the host waveguide. The proposed nanobeam structure theoretically possesses a sensitivity of 244.7 nm/RIU (refractive index unit) in a water environment. Moreover, an ultra-compact footprint of 6.4 µm×0.85 µm is achieved, which is only half of the size compared to the best value reported for the nanobeam structure. The results indicate that it is a promising sensor for excellent on-chip sensing with respect to the very small footprint.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...