Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826418

RESUMO

Hair cells (HCs) are the sensory receptors of the auditory and vestibular systems in the inner ears of vertebrates that selectively transduce mechanical stimuli into electrical activity. Although all HCs have the hallmark stereocilia bundle for mechanotransduction, HCs in non-mammals and mammals differ in their molecular specialization in the apical, basolateral and synaptic membranes. HCs of non-mammals, such as zebrafish (zHCs), are electrically tuned to specific frequencies and possess an active process in the stereocilia bundle to amplify sound signals. Mammalian cochlear HCs, in contrast, are not electrically tuned and achieve amplification by somatic motility of outer HCs (OHCs). To understand the genetic mechanisms underlying differences among adult zebrafish and mammalian cochlear HCs, we compared their RNA-seq-characterized transcriptomes, focusing on protein-coding orthologous genes related to HC specialization. There was considerable shared expression of gene orthologs among the HCs, including those genes associated with mechanotransduction, ion transport/channels, and synaptic signaling. For example, both zebrafish and mouse HCs express Tmc1, Lhfpl5, Tmie, Cib2, Cacna1d, Cacnb2, Otof, Pclo and Slc17a8. However, there were some notable differences in expression among zHCs, OHCs, and inner HCs (IHCs), which likely underlie the distinctive physiological properties of each cell type. Tmc2 and Cib3 were not detected in adult mouse HCs but tmc2a and b and cib3 were highly expressed in zHCs. Mouse HCs express Kcna10, Kcnj13, Kcnj16, and Kcnq4, which were not detected in zHCs. Chrna9 and Chrna10 were expressed in mouse HCs. In contrast, chrna10 was not detected in zHCs. OHCs highly express Slc26a5 which encodes the motor protein prestin that contributes to OHC electromotility. However, zHCs have only weak expression of slc26a5, and subsequently showed no voltage dependent electromotility when measured. Notably, the zHCs expressed more paralogous genes including those associated with HC-specific functions and transcriptional activity, though it is unknown whether they have functions similar to their mammalian counterparts. There was overlap in the expressed genes associated with a known hearing phenotype. Our analyses unveil substantial differences in gene expression patterns that may explain phenotypic specialization of zebrafish and mouse HCs. This dataset also includes several protein-coding genes to further the functional characterization of HCs and study of HC evolution from non-mammals to mammals.

2.
Front Cell Neurosci ; 16: 962106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060279

RESUMO

Juvenile and mature mouse cochleae contain various low-abundant, vulnerable sensory epithelial cells embedded in the calcified temporal bone, making it challenging to profile the dynamic transcriptome changes of these cells during maturation at the single-cell level. Here we performed the 10x Genomics single-cell RNA sequencing (scRNA-seq) of mouse cochleae at postnatal days 14 (P14) and 28. We attained the transcriptomes of multiple cell types, including hair cells, supporting cells, spiral ganglia, stria fibrocytes, and immune cells. Our hair cell scRNA-seq datasets are consistent with published transcripts from bulk RNA-seq. We also mapped known deafness genes to corresponding cochlear cell types. Importantly, pseudotime trajectory analysis revealed that inner hair cell maturation peaks at P14 while outer hair cells continue development until P28. We further identified and confirmed a long non-coding RNA gene Miat to be expressed during maturation in cochlear hair cells and spiral ganglia neurons, and Pcp4 to be expressed during maturation in cochlear hair cells. Our transcriptomes of juvenile and mature mouse cochlear cells provide the sequel to those previously published at late embryonic and early postnatal ages and will be valuable resources to investigate cochlear maturation at the single-cell resolution.

3.
BMC Neurosci ; 22(1): 18, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752606

RESUMO

BACKGROUND: The SCN11A gene, encoded Nav1.9 TTX resistant sodium channels, is a main effector in peripheral inflammation related pain in nociceptive neurons. The role of SCN11A gene in the auditory system has not been well characterized. We therefore examined the expression of SCN11A in the murine cochlea, the morphological and physiological features of Nav1.9 knockout (KO) ICR mice. RESULTS: Nav1.9 expression was found in the primary afferent endings beneath the inner hair cells (IHCs). The relative quantitative expression of Nav1.9 mRNA in modiolus of wild-type (WT) mice remains unchanged from P0 to P60. The number of presynaptic CtBP2 puncta in Nav1.9 KO mice was significantly lower than WT. In addition, the number of SGNs in Nav1.9 KO mice was also less than WT in the basal turn, but not in the apical and middle turns. There was no lesion in the somas and stereocilia of hair cells in Nav1.9 KO mice. Furthermore, Nav1.9 KO mice showed higher and progressive elevated ABR threshold at 16 kHz, and a significant increase in CAP thresholds. CONCLUSIONS: These data suggest a role of Nav1.9 in regulating the function of ribbon synapses and the auditory nerves. The impairment induced by Nav1.9 gene deletion mimics the characters of cochlear synaptopathy.


Assuntos
Nervo Coclear/patologia , Perda Auditiva Neurossensorial/genética , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Sinapses/patologia , Animais , Nervo Coclear/metabolismo , Deleção de Genes , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Sinapses/metabolismo
4.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268358

RESUMO

Hearing loss caused by noise, aging, antibiotics, and chemotherapy affects 10% of the world population, yet there are no Food and Drug Administration (FDA)-approved drugs to prevent it. Here, we screened 162 small-molecule kinase-specific inhibitors for reduction of cisplatin toxicity in an inner ear cell line and identified dabrafenib (TAFINLAR), a BRAF kinase inhibitor FDA-approved for cancer treatment. Dabrafenib and six additional kinase inhibitors in the BRAF/MEK/ERK cellular pathway mitigated cisplatin-induced hair cell death in the cell line and mouse cochlear explants. In adult mice, oral delivery of dabrafenib repressed ERK phosphorylation in cochlear cells, and protected from cisplatin- and noise-induced hearing loss. Full protection was achieved in mice with co-treatment with oral AZD5438, a CDK2 kinase inhibitor. Our study explores a previously unidentified cellular pathway and molecular target BRAF kinase for otoprotection and may advance dabrafenib into clinics to benefit patients with cisplatin- and noise-induced ototoxicity.


Assuntos
Antineoplásicos , Surdez , Perda Auditiva , Animais , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Células Ciliadas Auditivas , Perda Auditiva/etiologia , Perda Auditiva/prevenção & controle , Humanos , Camundongos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
5.
Cell Tissue Res ; 380(3): 435-448, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31932950

RESUMO

The LIM homeodomain transcription factor Lmx1a shows a dynamic expression in the developing mouse ear that stabilizes in the non-sensory epithelium. Previous work showed that Lmx1a functional null mutants have an additional sensory hair cell patch in the posterior wall of a cochlear duct and have a mix of vestibular and cochlear hair cells in the basal cochlear sensory epithelium. In E13.5 mutants, Sox2-expressing posterior canal crista is continuous with an ectopic "crista sensory epithelium" located in the outer spiral sulcus of the basal cochlear duct. The medial margin of cochlear crista is in contact with the adjacent Sox2-expressing basal cochlear sensory epithelium. By E17.5, this contact has been interrupted by the formation of an intervening non-sensory epithelium, and Atoh1 is expressed in the hair cells of both the cochlear crista and the basal cochlear sensory epithelium. Where cochlear crista was formerly associated with the basal cochlear sensory epithelium, the basal cochlear sensory epithelium lacks an outer hair cell band, and gaps are present in its associated Bmp4 expression. Further apically, where cochlear crista was never present, the cochlear sensory epithelium forms a poorly ordered but complete organ of Corti. We propose that the core prosensory posterior crista is enlarged in the mutant when the absence of Lmx1a expression allows JAG1-NOTCH signaling to propagate into the adjacent epithelium and down the posterior wall of the cochlear duct. We suggest that the cochlear crista propagates in the mutant outer spiral sulcus because it expresses Lmo4 in the absence of Lmx1a.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Células Ciliadas Auditivas Externas/citologia , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Mutantes , Mutação , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética
6.
Cell Rep ; 26(11): 3160-3171.e3, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30865901

RESUMO

Single-cell RNA sequencing is a powerful tool by which to characterize the transcriptional profile of low-abundance cell types, but its application to the inner ear has been hampered by the bony labyrinth, tissue sparsity, and difficulty dissociating the ultra-rare cells of the membranous cochlea. Herein, we present a method to isolate individual inner hair cells (IHCs), outer hair cells (OHCs), and Deiters' cells (DCs) from the murine cochlea at any post-natal time point. We harvested more than 200 murine IHCs, OHCs, and DCs from post-natal days 15 (p15) to 228 (p228) and leveraged both short- and long-read single-cell RNA sequencing to profile transcript abundance and structure. Our results provide insights into the expression profiles of these cells and document an unappreciated complexity in isoform variety in deafness-associated genes. This refined view of transcription in the organ of Corti improves our understanding of the biology of hearing and deafness.


Assuntos
Surdez/genética , Órgão Espiral/metabolismo , Transcriptoma , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Órgão Espiral/crescimento & desenvolvimento , Análise de Célula Única
7.
Front Mol Neurosci ; 11: 356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30327589

RESUMO

The mammalian auditory sensory epithelium, the organ of Corti, is composed of hair cells and supporting cells. Hair cells contain specializations in the apical, basolateral and synaptic membranes. These specializations mediate mechanotransduction, electrical and mechanical activities and synaptic transmission. Supporting cells maintain homeostasis of the ionic and chemical environment of the cochlea and contribute to the stiffness of the cochlear partition. While spontaneous proliferation and transdifferentiation of supporting cells are the source of the regenerative response to replace lost hair cells in lower vertebrates, supporting cells in adult mammals no longer retain that capability. An important first step to revealing the basic biological properties of supporting cells is to characterize their cell-type specific transcriptomes. Using RNA-seq, we examined the transcriptomes of 1,000 pillar and 1,000 Deiters' cells, as well as the two types of hair cells, individually collected from adult CBA/J mouse cochleae using a suction pipette technique. Our goal was to determine whether pillar and Deiters' cells, the commonly targeted cells for hair cell replacement, express the genes known for encoding machinery for hair cell specializations in the apical, basolateral, and synaptic membranes. We showed that both pillar and Deiters' cells express these genes, with pillar cells being more similar to hair cells than Deiters' cells. The fact that adult pillar and Deiters' cells express the genes cognate to hair cell specializations provides a strong molecular basis for targeting these cells for mammalian hair cell replacement after hair cells are lost due to damage.

8.
Sci Data ; 5: 180199, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277483

RESUMO

Inner hair cells (IHCs) and outer hair cells (OHCs) are the two anatomically and functionally distinct types of mechanosensitive receptor cells in the mammalian cochlea. The molecular mechanisms defining their morphological and functional specializations are largely unclear. As a first step to uncover the underlying mechanisms, we examined the transcriptomes of IHCs and OHCs isolated from adult CBA/J mouse cochleae. One thousand IHCs and OHCs were separately collected using the suction pipette technique. RNA sequencing of IHCs and OHCs was performed and their transcriptomes were analyzed. The results were validated by comparing some IHC and OHC preferentially expressed genes between present study and published microarray-based data as well as by real-time qPCR. Antibody-based immunocytochemistry was used to validate preferential expression of SLC7A14 and DNM3 in IHCs and OHCs. These data are expected to serve as a highly valuable resource for unraveling the molecular mechanisms underlying different biological properties of IHCs and OHCs as well as to provide a road map for future characterization of genes expressed in IHCs and OHCs.


Assuntos
Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Transcriptoma , Sistema y+ de Transporte de Aminoácidos/biossíntese , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Dinamina III/biossíntese , Dinamina III/genética , Camundongos , Camundongos Endogâmicos CBA
9.
Front Mol Neurosci ; 11: 326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254566

RESUMO

Auditory hair cells possess stunning cilia structure that composes of a bundle of stereocilia for mechano-electrical transduction and a single kinocilium for guiding the polarity of hair bundle towards maturation. However, the molecules underlying kinocilium function have not yet been fully understood. Hence, the proteins involved in hair bundle development and function are of a large interest. From a fine microarray analysis, we found that kinocilin (Kncn) was enriched in hair cell specific expression profile. Consistently, it has been reported that KNCN was a protein mainly located in the kinocilium of hair cells in the inner ear. However, the hypothesis that KNCN is a kinocilium protein has not been validated in mice with Kncn gene perturbed. In this study, we generated Kncn knockout mouse lines by CRISPR/Cas9 technique and further examined the morphology and function of cochlear hair cells. Our results showed that there was no obvious hearing loss in the knockout mice, determined by audiometry. Histological study demonstrated that the inner ear and hair cell structure were intact. Especially, there was no deficit of mechanotransduction (MET) in cochlear outer hair cells (OHCs). In summary, our work suggests that KNCN is not essential for kinocilium-oriented hair bundle function in cochlear hair cells.

10.
Front Cell Neurosci ; 12: 73, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662441

RESUMO

The senses of hearing and balance depend upon hair cells, the sensory receptors of the inner ear. Hair cells transduce mechanical stimuli into electrical activity. Loss of hair cells as a result of aging or exposure to noise and ototoxic drugs is the major cause of noncongenital hearing and balance deficits. In the ear of non-mammals, lost hair cells can spontaneously be replaced by production of new hair cells from conversion of supporting cells. Although supporting cells in adult mammals have lost that capability, neonatal supporting cells are able to convert to hair cells after inhibition of Notch signaling. We questioned whether Notch inhibition is sufficient to convert supporting cells to functional hair cells using electrophysiology and electron microscopy. We showed that pharmacological inhibition of the canonical Notch pathway in the cultured organ of Corti prepared from neonatal gerbils induced stereocilia formation in supporting cells (defined as hair cell-like cells or HCLCs) and supernumerary stereocilia in hair cells. The newly emerged stereocilia bundles of HCLCs were functional, i.e., able to respond to mechanical stimulation with mechanotransduction (MET) current. Transmission electron microscopy (TEM) showed that HCLCs converted from pillar cells maintained the pillar cell shape and that subsurface cisternae, normally observed underneath the cytoskeleton in outer hair cells (OHCs), was not present in Deiters' cells-derived HCLCs. Voltage-clamp recordings showed that whole-cell currents from Deiters' cells-derived HCLCs retained the same kinetics and magnitude seen in normal Deiters' cells and that nonlinear capacitance (NLC), an electrical hallmark of OHC electromotility, was not detected from any HCLCs measured. Taken together, these results suggest that while Notch inhibition is sufficient for promoting stereocilia bundle formation, it is insufficient to convert neonatal supporting cells to mature hair cells. The fact that Notch inhibition led to stereocilia formation in supporting cells and supernumerary stereocilia in existing hair cells appears to suggest that Notch signaling may regulate stereocilia formation and stability during development.

11.
Reprod Fertil Dev ; 29(3): 585-593, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28442065

RESUMO

The purpose of this study was to examine the morphological and functional development of the lateral wall of the scala media of the cochlea in miniature pigs; light and transmission electron microscopy and electrophysiology were used for this purpose. We showed that the lateral wall of the scala media of the cochlea appears at embryonic Day 21 (E21) when the cochlear duct begins to form. From E28 to E49, the lateral wall can be distinguished according to its position along the cochlea. At E56, cells in the lateral wall begin to differentiate into three different types. At E70, three cell types, marginal, intermediate and basal, can be clearly distinguished. At E91, the stria vascularis is adult-like and the organ of Corti is also morphologically mature. The average endocochlear potential measured from the second turn of the cochlea (at E98, postnatal Day 1 (P1), P13 and P30) was 71.4±2.5 (n=7), 78.8±1.5 (n=10), 77.3±2.3 (n=10) and 78.0±2.1 mV (n=10), respectively. Our results suggest that in miniature pigs the stria vascularis develops during the embryonic period, concurrent with maturation of the organ of Corti. The magnitude of the endocochlear potential reached its mature level when the stria vascularis was morphologically adult-like at E98. These findings provide a morphological and functional basis for future animal studies using the miniature pig model concerning the pathogenesis of various inner-ear diseases.


Assuntos
Cóclea/embriologia , Organogênese/fisiologia , Estria Vascular/citologia , Animais , Cóclea/citologia , Suínos , Porco Miniatura
12.
J Otol ; 12(4): 151-164, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29937851

RESUMO

Apoptosis, or controlled cell death, is a normal part of cellular lifespan. Cell death of cochlear hair cells causes deafness; an apoptotic process that is not well understood. Worldwide, 1.3 billion humans suffer some form of hearing loss, while 360 million suffer debilitating hearing loss as a direct result of the absence of these cochlear hair cells (Worldwide Hearing, 2014). Much is known about apoptosis in other systems and in other cell types thanks to studies done since the mid-20th century. Here we review current literature on apoptosis in general, and causes of deafness and cochlear hair cells loss as a result of apoptosis. The family of B-cell lymphoma (Bcl) proteins are among the most studied and characterized. We will review current literature on the Bcl2 and Bcl6 protein interactions in relation to apoptosis and their possible roles in vulnerability and survival of cochlear hair cells.

13.
PLoS One ; 11(12): e0168953, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28030585

RESUMO

Cochlear hair cells and the stria vascularis are critical for normal hearing. Hair cells transduce mechanical stimuli into electrical signals, whereas the stria is responsible for generating the endocochlear potential (EP), which is the driving force for hair cell mechanotransduction. We questioned whether hair cells and the stria interdepend for survival by using two mouse models. Atoh1 conditional knockout mice, which lose all hair cells within four weeks after birth, were used to determine whether the absence of hair cells would affect function and survival of stria. We showed that stria morphology and EP remained normal for long time despite a complete loss of all hair cells. We then used a mouse model that has an abnormal stria morphology and function due to mutation of the Mitf gene to determine whether hair cells are able to survive and transduce sound signals without a normal electrochemical environment in the endolymph. A strial defect, reflected by missing intermediate cells in the stria and by reduction of EP, led to systematic outer hair cell death from the base to the apex after postnatal day 18. However, an 18-mV EP was sufficient for outer hair cell survival. Surprisingly, inner hair cell survival was less vulnerable to reduction of the EP. Our studies show that normal function of the stria is essential for adult outer hair cell survival, while the survival and normal function of the stria vascularis do not depend on functional hair cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Modelos Animais de Doenças , Células Ciliadas Auditivas/fisiologia , Órgão Espiral/fisiologia , Estria Vascular/fisiologia , Animais , Feminino , Células Ciliadas Auditivas/citologia , Audição/fisiologia , Masculino , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição Associado à Microftalmia/metabolismo , Órgão Espiral/citologia , Estria Vascular/citologia
14.
PLoS One ; 11(3): e0151291, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974322

RESUMO

Regulation of gene expression is essential to determining the functional complexity and morphological diversity seen among different cells. Transcriptional regulation is a crucial step in gene expression regulation because the genetic information is directly read from DNA by sequence-specific transcription factors (TFs). Although several mouse TF databases created from genome sequences and transcriptomes are available, a cell type-specific TF database from any normal cell populations is still lacking. We identify cell type-specific TF genes expressed in cochlear inner hair cells (IHCs) and outer hair cells (OHCs) using hair cell-specific transcriptomes from adult mice. IHCs and OHCs are the two types of sensory receptor cells in the mammalian cochlea. We show that 1,563 and 1,616 TF genes are respectively expressed in IHCs and OHCs among 2,230 putative mouse TF genes. While 1,536 are commonly expressed in both populations, 73 genes are differentially expressed (with at least a twofold difference) in IHCs and 13 are differentially expressed in OHCs. Our datasets represent the first cell type-specific TF databases for two populations of sensory receptor cells and are key informational resources for understanding the molecular mechanism underlying the biological properties and phenotypical differences of these cells.


Assuntos
Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Regulação para Baixo/genética , Imuno-Histoquímica , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Regulação para Cima/genética
15.
J Biol Chem ; 290(40): 24326-39, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26283790

RESUMO

Prestin is the motor protein of cochlear outer hair cells. Its unique capability to perform direct, rapid, and reciprocal electromechanical conversion depends on membrane potential and interaction with intracellular anions. How prestin senses the voltage change and interacts with anions are still unknown. Our three-dimensional model of prestin using molecular dynamics simulations predicts that prestin contains eight transmembrane-spanning segments and two helical re-entry loops and that tyrosyl residues are the structural specialization of the molecule for the unique function of prestin. Using site-directed mutagenesis and electrophysiological techniques, we confirmed that residues Tyr(367), Tyr(486), Tyr(501), and Tyr(508) contribute to anion binding, interacting with intracellular anions through novel anion-π interactions. Such weak interactions, sensitive to voltage and mechanical stimulation, confer prestin with a unique capability to perform electromechanical and mechanoelectric conversions with exquisite sensitivity. This novel mechanism is completely different from all known mechanisms seen in ion channels, transporters, and motor proteins.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas de Transporte de Ânions/química , Células Ciliadas Auditivas Externas/metabolismo , Animais , Ânions , Dicroísmo Circular , Cristalografia por Raios X , Eletroquímica , Eletrofisiologia , Gerbillinae , Células HEK293 , Audição , Humanos , Microscopia Confocal , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Pyrococcus horikoshii/metabolismo , Ratos , Transportadores de Sulfato , Tirosina/química
16.
PLoS One ; 9(11): e112857, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25405349

RESUMO

Age-related hearing loss is a progressive sensorineural hearing loss that occurs during aging. Degeneration of the organ of Corti and atrophy of the lateral wall of the cochlear duct (or scala media) in the inner ear are the two primary causes. MicroRNAs (miRNAs), a class of short non-coding RNAs that regulate the expression of mRNA/protein targets, are important regulators of cellular senescence and aging. We examined miRNA gene expression profiles in the lateral wall of two mouse strains, along with exploration of the potential targets of those miRNAs that showed dynamic expression during aging. We show that 95 and 60 miRNAs exhibited differential expression in C57 and CBA mice during aging, respectively. A majority of downregulated miRNAs are known to regulate pathways of cell proliferation and differentiation, while all upregulated miRNAs are known regulators in the pro-apoptotic pathways. By using apoptosis-related gene array and bioinformatic approaches to predict miRNA targets, we identify candidate miRNA-regulated genes that regulate apoptosis pathways in the lateral wall of C57 and CBA mice during aging.


Assuntos
Envelhecimento/fisiologia , Ducto Coclear/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Perda Auditiva/fisiopatologia , MicroRNAs/genética , Envelhecimento/genética , Animais , Ducto Coclear/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Hibridização In Situ , Camundongos
17.
J Neurosci ; 34(33): 11085-95, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25122905

RESUMO

Inner hair cells (IHCs) and outer hair cells (OHCs) are the two types of sensory receptor cells that are critical for hearing in the mammalian cochlea. IHCs and OHCs have different morphology and function. The genetic mechanisms that define their morphological and functional specializations are essentially unknown. The transcriptome reflects the genes that are being actively expressed in a cell and holds the key to understanding the molecular mechanisms of the biological properties of the cell. Using DNA microarray, we examined the transcriptome of 2000 individually collected IHCs and OHCs from adult mouse cochleae. We show that 16,647 and 17,711 transcripts are expressed in IHCs and OHCs, respectively. Of those genes, ∼73% are known genes, 22% are uncharacterized sequences, and 5.0% are noncoding RNAs in both populations. A total of 16,117 transcripts are expressed in both populations. Uniquely and differentially expressed genes account for <15% of all genes in either cell type. The top 10 differentially expressed genes include Slc17a8, Dnajc5b, Slc1a3, Atp2a3, Osbpl6, Slc7a14, Bcl2, Bin1, Prkd1, and Map4k4 in IHCs and Slc26a5, C1ql1, Strc, Dnm3, Plbd1, Lbh, Olfm1, Plce1, Tectb, and Ankrd22 in OHCs. We analyzed commonly and differentially expressed genes with the focus on genes related to hair cell specializations in the apical, basolateral, and synaptic membranes. Eighty-three percent of the known deafness-related genes are expressed in hair cells. We also analyzed genes involved in cell-cycle regulation. Our dataset holds an extraordinary trove of information about the molecular mechanisms underlying hair cell morphology, function, pathology, and cell-cycle control.


Assuntos
Cóclea/citologia , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Transcriptoma , Animais , Cóclea/metabolismo , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Externas/citologia , Camundongos
18.
Hear Res ; 311: 25-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24361298

RESUMO

Prestin, the motor protein of cochlear outer hair cells, was identified 14 years ago. Prestin-based outer hair cell motility is responsible for the exquisite sensitivity and frequency selectivity seen in the mammalian cochlea. Prestin is the 5th member of an eleven-member membrane transporter superfamily of SLC26A proteins. Unlike its paralogs, which are capable of transporting anions across the cell membrane, prestin primarily functions as a motor protein with unique capability of performing direct and reciprocal electromechanical conversion on microsecond time scale. Significant progress in the understanding of its structure and the molecular mechanism has been made in recent years using electrophysiological, biochemical, comparative genomics, structural bioinformatics, molecular dynamics simulation, site-directed mutagenesis and domain-swapping techniques. This article reviews recent advances of the structural and functional properties of prestin with focus on the areas that are critical but still controversial in understanding the molecular mechanism of how prestin works: The structural domains for voltage sensing and interaction with anions and for conformational change. Future research directions and potential application of prestin are also discussed. This article is part of a Special Issue entitled .


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Percepção Auditiva , Células Ciliadas Auditivas Externas/metabolismo , Audição , Mecanotransdução Celular , Estimulação Acústica , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Relação Estrutura-Atividade , Transportadores de Sulfato
19.
PLoS One ; 8(6): e65565, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23755251

RESUMO

With advancements in modern medicine and significant improvements in life conditions in the past four decades, the elderly population is rapidly expanding. There is a growing number of those aged 100 years and older. While many changes in the human body occur with physiological aging, as many as 35% to 50% of the population aged 65 to 75 years have presbycusis. Presbycusis is a progressive sensorineural hearing loss that occurs as people get older. There are many studies of the prevalence of age-related hearing loss in the United States, Europe, and Asia. However, no audiological assessment of the population aged 100 years and older has been done. Therefore, it is not clear how well centenarians can hear. We measured middle ear impedance, pure-tone behavioral thresholds, and distortion-product otoacoustic emission from 74 centenarians living in the city of Shaoxing, China, to evaluate their middle and inner ear functions. We show that most centenarian listeners had an "As" type tympanogram, suggesting reduced static compliance of the tympanic membrane. Hearing threshold tests using pure-tone audiometry show that all centenarian subjects had varying degrees of hearing loss. More than 90% suffered from moderate to severe (41 to 80 dB) hearing loss below 2,000 Hz, and profound (>81 dB) hearing loss at 4,000 and 8,000 Hz. Otoacoustic emission, which is generated by the active process of cochlear outer hair cells, was undetectable in the majority of listeners. Our study shows the extent and severity of hearing loss in the centenarian population and represents the first audiological assessment of their middle and inner ear functions.


Assuntos
Presbiacusia/epidemiologia , Testes de Impedância Acústica , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , China/epidemiologia , Orelha Interna/fisiopatologia , Potenciais Evocados Auditivos , Feminino , Audição , Humanos , Masculino , Pessoa de Meia-Idade , Presbiacusia/fisiopatologia , Adulto Jovem
20.
PLoS One ; 8(4): e62786, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23646144

RESUMO

MicroRNAs (miRNAs), a class of short non-coding RNAs that regulate the expression of mRNA targets, are important regulators of cellular senescence and aging. We questioned which miRNAs are involved in age-related degeneration of the organ of Corti (OC), the auditory sensory epithelium that transduces mechanical stimuli to electrical activity in the inner ear. Degeneration of the OC is generally accepted as the main cause of age-related hearing loss (ARHL), a progressive loss of hearing in individuals as they grow older. To determine which miRNAs are involved in the onset and progression of ARHL, miRNA gene expression in the OC of two mouse strains, C57BL/6J and CBA/J, was compared at three different ages using GeneChip miRNA microarray and was validated by real-time PCR. We showed that 111 and 71 miRNAs exhibited differential expression in the C57 and CBA mice, respectively, and that downregulated miRNAs substantially outnumbered upregulated miRNAs during aging. miRNAs that had approximately 2-fold upregulation included members of miR-29 family and miR-34 family, which are known regulators of pro-apoptotic pathways. In contrast, miRNAs that were downregulated by about 2-fold were members of the miR-181 family and miR-183 family, which are known to be important for proliferation and differentiation, respectively. The shift of miRNA expression favoring apoptosis occurred earlier than detectable hearing threshold elevation and hair cell loss. Our study suggests that changes in miRNA expression precede morphological and functional changes, and that upregulation of pro-apoptotic miRNAs and downregulation of miRNAs promoting proliferation and differentiation are both involved in age-related degeneration of the OC.


Assuntos
MicroRNAs/genética , Órgão Espiral/metabolismo , Órgão Espiral/patologia , Presbiacusia/genética , Envelhecimento/genética , Animais , Limiar Auditivo , Contagem de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Ciliadas Auditivas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...