Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 174: 153-162, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061676

RESUMO

The management of chronic diabetic wounds is a complex issue that requires wound repair, regulation of inflammatory levels, and intervention to prevent bacterial infection. To address this issue, we developed a multifunctional photothermally responsive hydrogel (PAG-CuS) as an effective platform for managing the entire wound-healing process, including promoting wound healing, providing anti-inflammatory therapy, and performing photothermal sterilization. Constructed through copolymerization of acrylic acid (AA), methacrylic anhydride-modified gelatin (GelMA), and lipoic acid sodium (LAS) coated copper sulfide nanoparticles (CuS@LAS), PAG-CuS possessed a porous three-dimensional structure that promoted cell adhesion and had a substantial water-holding capacity. Additionally, the internal CuS@LAS not only conferred photothermal antibacterial properties to the hydrogel but also served as physical cross-linking agents, thus enhancing its mechanical strength. Under the NIR-induced photothermal effect, the porous hydrogel liberates CuS@LAS, and later CuS@LAS expels LAS via micelle deassembly to eliminate intracellular ROS. This results in the down-regulation of MMP-9 expression, promoting ECM production and facilitating wound healing. Meanwhile, the release of Cu2+ from PAG-CuS could enhance CD31 expression in endothelial cells, promoting microvessel formation, which is crucial for wound healing. In the diabetic wound model of GK rats, the PAG-CuS hydrogel reduced ROS levels, increased microvessel count, improved epithelialization, and enhanced wound healing. Therefore, this versatile photothermal hydrogel has the potential to be applied in sterilization, scavenging free radicals, and promoting angiogenesis, making it an effective and comprehensive solution to manage the challenges of diabetic wounds. STATEMENT OF SIGNIFICANCE: Assessment of functional recovery and timely adjustment of treatment strategy is critical in the management of chronic diabetic wounds. In this work, we prepared PAG-CuS composite hydrogels by integrating in situ reduction, chemical crosslinking, and nanoenhancement techniques. The near-infrared light-induced photothermal effect of PAG-CuS gel rapidly kills bacteria at the lesion site, and the generated heat simultaneously promotes the multilevel release of LAS from the gel, which could regulate the levels of ROS and MMP-9 to promote extracellular matrix formation. In addition, the Cu2+ released from the gel can promote the formation of blood vessels to improve blood oxygenation. Therefore, this project proposes a synergistic solution to realize the whole process of management to accelerate chronic diabetic wound healing.


Assuntos
Diabetes Mellitus , Ácido Tióctico , Animais , Ratos , Hidrogéis/farmacologia , Cobre/farmacologia , Células Endoteliais , Metaloproteinase 9 da Matriz , Espécies Reativas de Oxigênio , Cicatrização , Antibacterianos
2.
Burns Trauma ; 10: tkac019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910193

RESUMO

Background: Most traditional wound dressings only partially meet the needs of wound healing because of their single function. Patients usually suffer from the increasing cost of treatment and pain resulting from the frequent changing of wound dressings. Herein, we have developed a mutifunctional cryogel to promote bacterial infected wound healing based on a biocompatible polysaccharide. Methods: The multifunctional cryogel is made up of a compositive scaffold of chitosan (CS), gelatin (Gel) and tannic acid (TA) and in situ formed silver nanoparticles (Ag NPs). A liver bleeding rat model was used to evaluate the dynamic hemostasis performance of the various cryogels. In order to evaluate the antibacterial properties of the prepared cryogels, gram-positive bacterium Staphylococcus aureus (S. aureus) and gram-negative bacterium Escherichia coli (E. coli) were cultured with the cryogels for 12 h. Meanwhile, S. aureus was introduced to cause bacterial infection in vivo. After treatment for 2 days, the exudates from wound sites were dipped for bacterial colony culture. Subsequently, the anti-inflammatory effect of the various cryogels was evaluated by western blotting and enzyme-linked immunosorbent assay. Finally, full-thickness skin defect models on the back of SD rats were established to assess the wound healing performances of the cryogels. Results: Due to its porous structure, the multifunctional cryogel showed fast liver hemostasis. The introduced Ag NPs endowed the cryogel with an antibacterial efficiency of >99.9% against both S. aureus and E. coli. Benefited from the polyphenol groups of TA, the cryogel could inhibit nuclear factor-κB nuclear translocation and down-regulate inflammatory cytokines for an anti-inflammatory effect. Meanwhile, excessive reactive oxygen species could also be scavenged effectively. Despite the presence of Ag NPs, the cryogel did not show cytotoxicity and hemolysis. Moreover, in vivo experiments demonstrated that the biocompatible cryogel displayed effective bacterial disinfection and accelerated wound healing. Conclusions: The multifunctional cryogel, with fast hemostasis, antibacterial and anti-inflammation properties and the ability to promote cell proliferation could be widely applied as a wound dressing for bacterial infected wound healing.

3.
Int J Biol Macromol ; 215: 550-559, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35752336

RESUMO

A novel antibacterial strategy is urgently required to develop for solving bacterial biofilm obstruction and bacterial drug resistance in the infected wound healing process. Herein, the Chitosan/Bletilla striata polysaccharide composited microneedles were prepared by chitosan, tannic acid, AgNO3 and Bletilla striata polysaccharide through step centrifugation. In our design system, the porous structure of microneedles gradually disappeared, and the mechanical properties were significantly improved after multiple fillings. Ag+ is reduced in-situ to silver nanoparticles by the abundant polyphenols of tannic acid, displaying antibacterial effects both in vitro and vivo, even for methicillin resistant Staphylococcus aureus. The addition of Bletilla striata polysaccharide increased the ability of piercing biofilm and promoted wound healing. The microneedles exhibited good biocompatibility and with function of piercing the bacterial biofilms, scavenging excessive free radicals, inhibiting inflammatory factors, and promoting wound healing. Therefore, the multifunctional composited microneedles show great potential to promote infected and susceptible wound healing.


Assuntos
Quitosana , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Orchidaceae , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Nanopartículas Metálicas/química , Orchidaceae/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Prata/química , Taninos/farmacologia , Cicatrização
4.
J Mater Chem B ; 9(1): 159-169, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226389

RESUMO

Self-adhering hydrogels are promising materials to be employed as wound dressings, because they can be used for wound healing without the necessity of additional stitching. However, micro-organisms can easily adhere to these hydrogels as well, which usually causes wound infections. Therefore, adhesive hydrogels are often combined with antibiotics. However, this introduces a risk of drug resistance, cytotoxicity and poor cell affinity. Consequently, recently, there has been great interest in developing non-antibiotic, antibacterial adhesive hydrogels. In this article, we present a simple one-pot synthesis procedure to prepare self-adhesive hydrogels composed of poly(acrylamide) (PAM), naturally derived chitosan (CS) and tannic acid/ferric ion chelates (TA@Fe3+). TA@Fe3+ enables self-catalysis of the polymerization reaction. In addition, due to its near infrared (NIR) photothermal responsiveness, TA@Fe3+ allows for eliminating the bacterial activity with up to 91.6% and 94.7% effectivity against Escherichia coli and Staphylococcus aureus, respectively. Mechanical and adhesion testing shows that the hydrogels are tough as well as flexible and will adhere repeatedly to many types of biological tissues, which can be attributed to the combination of physical and chemical bonding between TA@Fe3+ and PAM and CS, respectively. Moreover, in vitro and in vivo tests indicate that the NIR photothermally active hydrogel can effectively prevent bacterial infection and accelerate tissue regeneration, which demonstrates that these hydrogels are promising functional materials for wound healing applications.


Assuntos
Antibacterianos/síntese química , Materiais Biocompatíveis/síntese química , Hidrogéis/síntese química , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Células 3T3 , Animais , Antibacterianos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Catálise , Células Cultivadas , Hidrogéis/administração & dosagem , Camundongos , Ratos , Ratos Sprague-Dawley , Cicatrização/fisiologia , Infecção dos Ferimentos/patologia
5.
Bioconjug Chem ; 30(3): 541-546, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30726061

RESUMO

Due to self-produced extracellular polymeric substances (EPS), biofilms are hard to eradicate by common antimicrobials. Herein, a new quaternary ammonium salt based cross-linked micelle (QAS@CM) was created to combat biofilms. The QAS@CM adsorbed first onto the biofilm surface through multicharged interaction, then penetrated the EPS in the form of nanoparticles and diffused throughout the films. By responding to the biofilm acid/lipase microenvironment, these nanoparticles would further break into quaternary ammonium oligomers and act as the polyvalent inhibitors to effectively destroy the established biofilm and kill the corresponding bacteria within it.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Humanos , Micelas , Nanopartículas/química , Sais/química , Sais/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia
6.
J Cancer Res Clin Oncol ; 144(8): 1413-1422, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29797219

RESUMO

PURPOSE: AZD9291 is an irreversible, small-molecule inhibitor which has potency against mutant EGFR- and T790M-resistant mutation. Despite the encouraging efficacy in clinical, the acquired resistance will finally occur. Further study will need to be done to identify the acquired resistance mechanisms and determine the next treatment. METHODS: We established an AZD9291-resistant cell line (HCC827/AZDR) from parental HCC827 cell line through stepwise pulsed selection of AZD9291. The expression of EGFR and its downstream pathways were determined by western blot analysis or immunofluorescence assay. The sensitivity to indicated agents were evaluated by MTS. RESULTS: Compared with parental HCC827 cells, the HCC827/AZDR cells showed high resistance to AZD9291 and other EGFR-TKIs, and exhibited a mesenchymal-like phenotype. Almost complete loss of EGFR expression was observed in HCC827/AZDR cells. But the activation of downstream pathway, MAPK signaling, was found in HCC827/AZDR cells even in the presence of AZD9291. Inhibition of MAPK signaling had no effect on cell viability of HCC827/AZDR and could not reverse AZD9291 resistance because of the subsequent activation of AKT signaling. When treated with the combination of AKT and MAPK inhibitor, HCC827/AZDR showed remarkable growth inhibition. CONCLUSIONS: Loss of EGFR could be proposed as a potential acquired resistance mechanism of AZD9291 in EGFR-mutant NSCLC cells with an EMT phenotype. Despite the loss of EGFR, the activation of MAPK pathway which had crosstalk with AKT pathway could maintain the proliferation and survival of resistant cells. Blocking MAPK and AKT signaling may be a potential therapeutic strategy following AZD9291 resistance.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/deficiência , Receptores ErbB/genética , Éxons , Deleção de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
RSC Adv ; 8(37): 20829-20835, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542359

RESUMO

Herein, antibacterial coordination polymer hydrogels were conveniently fabricated in water via coordination between silver nitrate and PEGylated bisimidazolylbenzyl alcohol (1a-c). These coordination polymer hydrogels exhibit much better antibacterial activity than silver nitrate against both Gram-negative and Gram-positive pathogens including multidrug-resistant pathogens. The coordination polymer Ag/1c with a long PEG chain (PEG1000) was demonstrated to be the most effective antibacterial material, and its minimum inhibition concentrations (MICs) could be as low as 15.2 times for common Staphylococcus aureus and 4.8 times for methicillin-resistant Staphylococcus aureus over that of silver nitrate. With improved antibacterial performance, easy preparation method, improved stability, sustained releasability, outstanding ductility and low cytotoxicity, the as-prepared coordination polymer hydrogels should find various potential applications such as in clinical burn and wound dressings, biofilms, bioadhesives, and coatings of biomedical materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...