Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(Supplement_1): i347-i356, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940178

RESUMO

MOTIVATION: RNA design shows growing applications in synthetic biology and therapeutics, driven by the crucial role of RNA in various biological processes. A fundamental challenge is to find functional RNA sequences that satisfy given structural constraints, known as the inverse folding problem. Computational approaches have emerged to address this problem based on secondary structures. However, designing RNA sequences directly from 3D structures is still challenging, due to the scarcity of data, the nonunique structure-sequence mapping, and the flexibility of RNA conformation. RESULTS: In this study, we propose RiboDiffusion, a generative diffusion model for RNA inverse folding that can learn the conditional distribution of RNA sequences given 3D backbone structures. Our model consists of a graph neural network-based structure module and a Transformer-based sequence module, which iteratively transforms random sequences into desired sequences. By tuning the sampling weight, our model allows for a trade-off between sequence recovery and diversity to explore more candidates. We split test sets based on RNA clustering with different cut-offs for sequence or structure similarity. Our model outperforms baselines in sequence recovery, with an average relative improvement of 11% for sequence similarity splits and 16% for structure similarity splits. Moreover, RiboDiffusion performs consistently well across various RNA length categories and RNA types. We also apply in silico folding to validate whether the generated sequences can fold into the given 3D RNA backbones. Our method could be a powerful tool for RNA design that explores the vast sequence space and finds novel solutions to 3D structural constraints. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/ml4bio/RiboDiffusion.


Assuntos
Conformação de Ácido Nucleico , Dobramento de RNA , RNA , RNA/química , Biologia Computacional/métodos , Algoritmos , Software , Redes Neurais de Computação , Análise de Sequência de RNA/métodos
2.
Appl Opt ; 48(20): 3967-78, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19593349

RESUMO

We present a new nonparametric cooperative approach to multiband image segmentation. It is based on cooperation between region-growing segmentation and edge segmentation. This approach requires no input data other than the images to be processed. It uses a spectral homogeneity criterion whose threshold is determined automatically. The threshold is adaptive and varies depending on the objects to be segmented. Applying this new approach to very high resolution satellite imagery has yielded satisfactory results. The approach demonstrated its performance on images of varied complexity and was able to detect objects of great spatial and spectral heterogeneity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...