Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 28(11): 278, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-38062813

RESUMO

BACKGROUND: Drosophila melanogaster is a well-studied and highly tractable genetic model system for deciphering the molecular mechanisms underlying various biological processes. Although being one of the most critical post-translational modifications of proteins, the understanding of glycosylation in Drosophila is still lagging behind compared with that of other model organisms. METHODS: In this study, we systematically investigated the site-specific N-glycan profile of Drosophila melanogaster using intact glycopeptide analysis technique. This approach identified the glycans, proteins, and their glycosites in Drosophila, as well as information on site-specific glycosylation, which allowed us to know which glycans are attached to which glycosylation sites. RESULTS: The results showed that the majority of N-glycans in Drosophila were high-mannose type (69.3%), consistent with reports in other insects. Meanwhile, fucosylated N-glycans were also highly abundant (22.7%), and the majority of them were mono-fucosylated. In addition, 24 different sialylated glycans attached with 16 glycoproteins were identified, and these proteins were mainly associated with developmental processes. Gene ontology analysis showed that N-glycosylated proteins in Drosophila were involved in multiple biological processes, such as axon guidance, N-linked glycosylation, cell migration, cell spreading, and tissue development. Interestingly, we found that seven glycosyltransferases and four glycosidases were N-glycosylated, which suggested that N-glycans may play a regulatory role in the synthesis and degradation of N-glycans and glycoproteins. CONCLUSIONS: To our knowledge, this work represents the first comprehensive analysis of site-specific N-glycosylation in Drosophila, thereby providing new perspectives for the understanding of biological functions of glycosylation in insects.


Assuntos
Drosophila melanogaster , Glicoproteínas , Animais , Drosophila melanogaster/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Polissacarídeos/metabolismo , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Insetos/metabolismo
2.
Org Biomol Chem ; 21(45): 9037-9048, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37933527

RESUMO

A novel C-N coupling of various arylamines with dialkyl azodicarboxylates under metal-free conditions for the rapid assembly of carbamates has been achieved. This established protocol features mild reaction conditions, simple operation, broad substrate scope, moderate to excellent yields and good tolerance of functional groups. Moreover, the potential synthetic utility of products was exemplified by a series of intriguing chemical operations.

3.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838635

RESUMO

3,n-fused (n = 4-7) tricyclic indoles are pervasive motifs, embedded in a variety of biologically active molecules and natural products. Thus, numerous catalytic methods have been developed for the synthesis of these skeletons over the past few decades. In particular, palladium-catalyzed transformations have received much attention in recent years. This review summarizes recent developments in the synthesis of these tricyclic indoles with palladium-catalyzed domino reactions and their applications in the total synthesis of representative natural products.


Assuntos
Indóis , Paládio , Ciclização , Catálise
4.
Environ Sci Pollut Res Int ; 28(42): 59696-59704, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34145540

RESUMO

The methane production rate of high solid anaerobic digestion (HSAD) was poor although it was a promising technology with the advantages of small reactor, low energy consumption, and less digestate. In our research before, thermal treatment was proved to enhance HSAD's methane production rate via both batch experiments and continuous experiments of swine manure. However, the effect or investigation of thermal treatment's temperature-time combinations was not yet reported. In this study, swine manure was firstly thermally treated in 500-mL glass bottles with 400-mL work volume at 45-65 °C for 1-4 days. HSAD experiment of 10% solid content was then set up. The VS ratio of substrate to inoculum was 1:1. Thermal treatment at 45 °C (3 days), 55 °C (1 day), and 65 °C (3 days) could obtain the highest methane production rate, which was around 40% higher. Kinetics analysis suggested that the degradation of swine manure was quite different at different temperatures. Furthermore, energy assessment indicated that "thermal treatment + HSAD" had significant advantages in improving HSAD economic feasibility, because the improved methane production rate could compensate for the extra energy utilized for thermal treatment. Heat treatment at 45 °C (4 days) was preferred when the heating equipment was limited. Heat treatment at 55 °C (1 day) was preferred when the floor space and reactor volume were restricted. Heat treatment at 65°C (3 days) was preferred when the requirement of the digestate's sanitary condition is strict.


Assuntos
Esterco , Anaerobiose , Animais , Cinética , Tempo de Reação , Suínos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...