Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(16): 5936-5943, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37062889

RESUMO

The hydroxylamine method involves the synthesis of a new hydroxamic acid collector, i.e., phenylpropyl hydroxamic acid (PHA), from methyl cinnamic hydroxamic acid. Flotation test results show that PHA exhibits good selective collection ability. The adsorption mechanism of PHA is investigated using the zeta potential, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The results show that PHA formed a new Ca-O bond with Ca2+ on the fluorite surface via chemical adsorption. A new five-element chelated hydroxamate group may have formed in Ca on the fluorite surface. The PHA selectivity is fully explained via density functional theory (DFT) calculations, and an adsorption model is established.

2.
Langmuir ; 38(50): 15858-15865, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36473165

RESUMO

Lepidolite is an important mineral resource of lithium. With the increase in awareness of low-carbon and green travel, the demand for lithium has increased dramatically. Therefore, how to increase the output of lithium has to turn into high precedence. In this paper, amidoxime (DPA) was synthesized and used for the efficient collection of lepidolite. Dodecylamine (DA), a commonly used collector of lepidolite ore, was used for comparison. The collecting performances of DA and DPA for lepidolite were studied by the micro-flotation experiment, and the adsorption mechanism of DPA on lepidolite was verified by contact angle, zeta potential tests, FTIR spectra, and density functional theory (DFT) calculations. The results of flotation experiments showed that at the same collector dosage (3 × 10-4 mol/L), the recovery of lepidolite could reach 90%, while the recovery of lepidolite with DA was only 52.5%, and to achieve the maximum recovery of DA (77.5%), only half of the DPA was added. The contact angle test results showed that DPA could effectively improve the hydrophobicity of lepidolite than DA. FTIR spectra and zeta potential tests suggested that DPA molecules were adsorbed on the lepidolite surface by electrostatic attraction. DFT calculations revealed that DPA reacted with the nucleophilic reagent (lepidolite) by the reactive site of the -CH2NH(CH2)2C(NOH)N+H3 group and more easily absorbed on the surface of lepidolite than DA. Therefore, our new finding will provide an important prospect for the sustainable development and utilization of lithium resources.

3.
Chem Commun (Camb) ; 58(62): 8678-8681, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35822925

RESUMO

Herein we present the use of a Gemini surfactant and reverse froth flotation to efficiently separate magnetite from quartz and produce iron ore at 273 K. This surfactant achieved an obviously superior flotation performance (TFe recovery increased by 48.18%), and the dosage of the Gemini surfactant was three times less than that of a conventional monomeric surfactant. Our findings are expected to serve as a general guide to design a new and excellent collector for high-efficiency mineral flotation and to lead to an efficient and clean development of mineral resources.

4.
Langmuir ; 38(29): 9010-9020, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35831986

RESUMO

The separation and enrichment of scheelite from calcite are hindered by the similar active Ca2+ sites of scheelite and the calcite with calciferous gangue. Herein, a novel trisiloxane surfactant, N-(2-aminoethyl)-3-aminopropyltrisiloxane (AATS), was first explored and synthesized and recommended as the collector for the flotation separation of scheelite from calcite. The micro-flotation and mixed binary mineral flotation tests showed that AATS had excellent collection performance for scheelite and high selectivity for calcite within a wide pH range. At the same time, contact angle and zeta-potential measurements, Fourier transform infrared (FTIR) analysis, and density functional theory (DFT) calculations revealed the relevant adsorption mechanism. The contact angle measurement showed that AATS can increase the contact angle of the scheelite surface from 41.7 to 95.8°, greatly enhancing the hydrophobicity of the mineral surface. The results of FTIR analysis and zeta-potential measurement explained that AATS was electrostatically adsorbed on the mineral surface, and DFT calculation further verified that the -N+H3-positive group in AATS was adsorbed on the negatively charged scheelite surface. Therefore, AATS can realize the expectation of high efficiency and selectivity of minerals and enhance the adhesion between the surface of scheelite minerals and bubbles, providing a fresh approach to industrial production.

5.
J Environ Manage ; 317: 115372, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617862

RESUMO

Tailings ponds for gangue mineral storage are widely recognized as a dangerous source of toxic minerals and heavy metal-bearing solution. Therefore, recovering valuable minerals and critical elements from tailings is an important means to protect the environment in an economic way. Wolframite tailings usually contain a considerable amount of tungsten resources, but the presence of high content of kaolinite sludge makes it very difficult to recycle wolframite. Herein, a novel sebacoyl hydroxamic acid (SHA) was synthesized and introduced as a novel wolframite collector to effectively utilize wolframite tailings, and its collection performance was compared with that of benzohydroxamic acid (BHA). Micro-flotation tests showed that SHA could still obtain 80% wolframite recovery in the presence of kaolinite slimes. Bench-scale flotation tests indicated that SHA can effectively recover wolframite concentrate with 55.64% WO3 grade and 75.28% WO3 recovery from wolframite tailings by the combined shaking table-flotation process. Polarized light microscope observations showed that SHA could promote the formation of hydrophobic agglomerates of wolframite particles. These results show that SHA can be used as an efficient collector for disposing of wolframite tailings, and provide an important reference for the development of efficient and comprehensive utilization of tailings.


Assuntos
Metais Pesados , Tungstênio , Ácidos Hidroxâmicos , Caulim , Minerais
6.
J Agric Food Chem ; 68(40): 11114-11120, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32936618

RESUMO

Phosphorite is generally used in the manufacture of phosphate fertilizer and plays a vital role in the development of agricultural and food production. Nonetheless, how to obtain phosphorite concentrates efficiently and sustainably has become an urgent problem. In this study, a newly designed trisiloxane surfactant, N-(2-Aminoethyl)-3-aminopropyltrisiloxane (AATS), has been prepared and utilized as an emerging collector for reverse flotation of phosphorite ore. Its collecting ability was compared with the conventional surfactant 1-dodecamine (DDA). In the collector concentration tests, AATS with lower concentrations showed stronger collecting ability for quartz. In the pH tests, AATS always performed better than DDA in the acidic or alkaline condition. In bench-scale flotation experiments, the P2O5 recovery of phosphorite concentrates with 150 g/t AATS was 10.77% higher than that with 300 g/t DDA, which proved that AATS can be applied to the sustainable production of phosphorite concentrates. For a 4000 t/d phosphorite ore processing plant, the profit could be increased 7,014,702.07 USD every year by using AATS as the collector. Therefore, this work provides a promising approach to enhance the production efficiency of phosphate fertilizer and to promote the sustainable development of agriculture.


Assuntos
Fertilizantes/análise , Minerais/química , Fosfatos/química , Siloxanas/química , Tensoativos/química , Quartzo/química , Tensoativos/síntese química
7.
Bioresour Technol ; 275: 421-424, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30611623

RESUMO

Froth flotation has been proved to be a promising approach for commercial scale harvesting of microalgae. However, all the surfactants used in the microalgae flotation harvesting process are conventional monomeric surfactants contain a single similar hydrophobic group in the molecule, which results in a low harvesting efficiency. In this work, a novel Gemini surfactant, N,N'-bis(cetyldimethyl)-1,4-butane diammonium dibromide (BCBD) was prepared, and originally recommended as a collector for froth flotation harvesting of Chlorella vulgaris from culture medium. The performance of BCBD was compared with the results acquired using its conventional monomeric surfactant cetyl trimethyl ammonium bromide (CTAB). The bench-scale flotation results showed that BCBD had excellent collecting power for Chlorella vulgaris. Achieving the obviously superior flotation harvesting performance (flotation recovery increased by 21.4% and enrichment ratio increased by 22.9), the dosage of Gemini type BCBD collector is five times less than that of monomeric CTAB collector.


Assuntos
Brometos/isolamento & purificação , Chlorella vulgaris/química , Microalgas/química , Tensoativos/isolamento & purificação
8.
J Agric Food Chem ; 66(50): 13126-13132, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30485094

RESUMO

Potassium fertilizer plays a critical role in increasing the food production. Carnallite is concentrated by reverse froth flotation and used as a raw material to produce potassium fertilizer (KCl) in agriculture. However, all the surfactants used in the carnallite reverse flotation process are conventional monomeric surfactants contain a single similar hydrophobic group in the molecule, which results in a low production efficiency. In this work, a new morpholine-based Gemini surfactant, 1,4-bis (morpholinododecylammonio) butane dibromide (BMBD), was prepared and originally recommended as a collector for reverse froth flotation separation of halite (NaCl) from carnallite ore. The flotation results indicated BMBD had higher flotation recovery and stronger affinity of halite against carnallite compared with conventional monomeric surfactant N-(n-Dodecyl) morpholine (DDM). Fourier transform infrared spectra suggested that BMBD molecules were adsorbed on halite surface rather than the carnallite surface. Additionally, BMBD molecules can strongly reduce the surface tension of NaCl saturated solution. Considering the BMBD's unique properties, such as double reactive centers to mineral surfaces, double hydrophobic groups, and stronger surface tension reducing ability, made it be a superior collector for reverse flotation desalination from carnallite ores than DDM.


Assuntos
Calcitriol/análogos & derivados , Fertilizantes/análise , Morfolinas/química , Potássio/química , Tensoativos/química , Calcitriol/química , Interações Hidrofóbicas e Hidrofílicas , Tensoativos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...