Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int Immunopharmacol ; 134: 112191, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759369

RESUMO

Social behavior is inextricably linked to the immune system. Although IFN-γ is known to be involved in social behavior, yet whether and how it encodes social memory remains unclear. In the current study, we injected with IFN-γ into the lateral ventricle of male C57BL/6J mice, and three-chamber social test was used to examine the effects of IFN-γ on their social preference and social memory. The morphology of microglia in the hippocampus, prelimbic cortex and amygdala was examined using immunohistochemistry, and the phenotype of microglia were examined using immunohistochemistry and enzyme-linked immunosorbent assays. The IFN-γ-injected mice were treated with lipopolysaccharide, and effects of IFN-γ on behavior and microglial responses were evaluated. STAT1 pathway and microglia-neuron interactions were examined in vivo or in vitro using western blotting and immunohistochemistry. Finally, we use STAT1 inhibitor or minocycline to evaluated the role of STAT1 in mediating the microglial priming and effects of primed microglia in IFN-γ-induced social dysfunction. We demonstrated that 500 ng of IFN-γ injection results in significant decrease in social index and social novelty recognition index, and induces microglial priming in hippocampus, characterized by enlarged cell bodies, shortened branches, increased expression of CD68, CD86, CD74, CD11b, CD11c, CD47, IL-33, IL-1ß, IL-6 and iNOS, and decreased expression of MCR1, Arg-1, IGF-1 and BDNF. This microglia subpopulation is more sensitive to LPS challenge, which characterized by more significant morphological changes and inflammatory responses, as well as induced increased sickness behaviors in mice. IFN-γ upregulated pSTAT1 and STAT1 and promoted the nuclear translocation of STAT1 in the hippocampal microglia and in the primary microglia. Giving minocycline or STAT1 inhibitor fludarabin blocked the priming of hippocampal microglia induced by IFN-γ, ameliorated the dysfunction in hippocampal microglia-neuron interactions and synapse pruning by microglia, thereby improving social memory deficits in IFN-γ injected mice. IFN-γ initiates STAT1 pathway to induce priming of hippocampal microglia, thereby disrupts hippocampal microglia-neuron interactions and neural circuit link to social memory. Blocking STAT1 pathway or inhibiting microglial priming may be strategies to reduce the effects of IFN-γ on social behavior.


Assuntos
Hipocampo , Interferon gama , Camundongos Endogâmicos C57BL , Microglia , Fator de Transcrição STAT1 , Transdução de Sinais , Comportamento Social , Animais , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Fator de Transcrição STAT1/metabolismo , Masculino , Interferon gama/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/imunologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos , Memória/efeitos dos fármacos , Células Cultivadas , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/metabolismo
2.
Brain Behav Immun Health ; 36: 100729, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317780

RESUMO

Communication among the brain, gut and microbiota in the gut is known to affect the susceptibility to stress, but the mechanisms involved are unclear. Here we demonstrated that stress resistance in mice was associated with more abundant Lactobacillus and Akkermansia in the gut, but less abundant Bacteroides, Alloprevotella, Helicobacter, Lachnoclostridium, Blautia, Roseburia, Colidextibacter and Lachnospiraceae NK4A136. Stress-sensitive animals showed higher permeability and stronger immune responses in their colon, as well as higher levels of pro-inflammatory cytokines in serum. Their hippocampus also showed more extensive microglial activation, abnormal interactions between microglia and neurons, and lower synaptic plasticity. Transplanting fecal microbiota from stress-sensitive mice into naïve ones perturbed microglia-neuron interactions and impaired synaptic plasticity in the hippocampus, translating to more depression-like behavior after stress exposure. Conversely, transplanting fecal microbiota from stress-resistant mice into naïve ones protected microglia from activation and preserved synaptic plasticity in the hippocampus, leading to less depression-like behavior after stress exposure. These results suggested that gut microbiota may influence resilience to chronic psychological stress by regulating microglia-neuron interactions in the hippocampus.

3.
Neurobiol Dis ; 191: 106396, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176570

RESUMO

Studies from rodents to primates and humans indicate that individuals vary in how resilient they are to stress, and understanding the basis of these variations may help improve treatments for depression. Here we explored the potential contribution of the gut microbiome to such variation. Mice were exposed to chronic unpredictable mild stress (CUMS) for 4 weeks then allowed to recover for 3 weeks, after which they were subjected to behavioral tests and categorized as showing low or high stress resilience. The two types of mouse were compared in terms of hippocampal gene expression using RNA sequencing, fecal microbiomes using 16S RNA sequencing, and extent of neurogenesis in the hippocampus using immunostaining of brain sections. Fecal microbiota were transplanted from either type of mouse into previously stress-exposed and stress-naïve animals, and the effects of the transplantation on stress-induced behaviors and neurogenesis in the hippocampus were examined. Finally, we blocked neurogenesis using temozolomide to explore the role of neurogenesis promoted by fecal microbiota transplantation in enhancing resilience to stress. Results showed that highly stress-resilient mice, but not those with low resilience, improved significantly on measures of anhedonia, behavioral despair, and anxiety after 3-week recovery from CUMS. Their feces showed greater abundance of Lactobacillus, Bifidobacterium and Romboutsia than feces from mice with low stress resilience, as well as lower abundance of Staphylococcus, Psychrobacter and Corynebacterium. Similarly, highly stress-resilient mice showed greater neurogenesis in hippocampus than animals with low stress resilience. Transplanting fecal microbiota from mice with high stress resilience into previously CUMS-exposed recipients rescued neurogenesis in hippocampus, facilitating recovery from stress-induced depression and cognitive decline. Blockade of neurogenesis with temozolomide abolished recovery of recipients from CUMS-induced depression and cognitive decline in mice transplanted with fecal microbiota from mice with high stress resilience. In conclusion, our results suggested that remodeling of the gut microbiome after stress may reverse stress-induced impairment of hippocampal neurogenesis and thereby promote recovery from stress-induced depression.


Assuntos
Depressão , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Depressão/metabolismo , Microbioma Gastrointestinal/genética , Temozolomida/metabolismo , Temozolomida/farmacologia , Hipocampo/metabolismo , Neurogênese , Estresse Psicológico/psicologia
4.
Brain Behav Immun ; 115: 280-294, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914097

RESUMO

BACKGROUND: Mental disorders may be involved in neuroinflammatory processes that are triggered by gut microbiota. How gut microbiota influence microglia-mediated sensitivity to stress remains unclear. Here we explored in an animal model of depression whether disruption of the gut microbiome primes hippocampal microglia, thereby impairing neurogenesis and sensitizing to stress. METHODS: Male C57BL/6J mice were exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, and effects on gut microbiota were assessed using 16S rRNA sequencing. Fecal microbiota was transplanted from control or CUMS mice into naïve animals. The depression-like behaviors of recipients were evaluated in a forced swimming test and sucrose preference test. The morphology and phenotype of microglia in the hippocampus of recipients were examined using immunohistochemistry, quantitative PCR, and enzyme-linked immunosorbent assays. The recipients were treated with lipopolysaccharide or chronic stress exposure, and effects were evaluated on behavior, microglial responses and hippocampal neurogenesis. Finally, we explored the ability of minocycline to reverse the effects of CUMS on hippocampal neurogenesis and stress sensitivity in recipients. RESULTS: CUMS altered the gut microbiome, leading to higher relative abundance of some bacteria (Helicobacter, Bacteroides, and Desulfovibrio) and lower relative abundance of some bacteria (Lactobacillus, Bifidobacterium, and Akkermansia). Fecal microbiota transplantation from CUMS mice to naïve animals induced microglial priming in the dentate gyrus of recipients. This microglia showed hyper-ramified morphology, and became more sensitive to LPS challenge or chronic stress, which characterized by more significant morphological changes and inflammatory responses, as well as impaired hippocampal neurogenesis and increased depressive-like behaviors. Giving minocycline to recipients reversed these effects of fecal transplantation. CONCLUSIONS: These findings suggest that gut microbiota from stressed animals can induce microglial priming in the dentate gyrus, which is associated with a hyper-immune response to stress and impaired hippocampal neurogenesis. Remodeling the gut microbiome or inhibiting microglial priming may be strategies to reduce sensitivity to stress.


Assuntos
Depressão , Microbioma Gastrointestinal , Humanos , Camundongos , Masculino , Animais , Depressão/microbiologia , Microglia , Minociclina/farmacologia , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Hipocampo , Neurogênese/fisiologia , Estresse Psicológico
5.
Nat Commun ; 12(1): 2973, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016965

RESUMO

The gradient-structure is ideal nanostructure for conversion-type anodes with drastic volume change. Here, we demonstrate an inorganic-organic competitive coating strategy for constructing gradient-structured ferroferric oxide-carbon nanospheres, in which the deposition of ferroferric oxide nanoparticles and polymerization of carbonaceous species are competitive and well controlled by the reaction thermodynamics. The synthesized gradient-structure with a uniform size of ~420 nm consists of the ferroferric oxide nanoparticles (4-8 nm) in carbon matrix, which are aggregated into the inner layer (~15 nm) with high-to-low component distribution from inside to out, and an amorphous carbon layer (~20 nm). As an anode material, the volume change of the gradient-structured ferroferric oxide-carbon nanospheres can be limited to ~22% with ~7% radial expansion, thus resulting in stable reversible specific capacities of ~750 mAh g-1 after ultra-long cycling of 10,000 cycles under ultra-fast rate of 10 A g-1. This unique inorganic-organic competitive coating strategy bring inspiration for nanostructure design of functional materials in energy storage.

6.
Med Sci Monit ; 27: e929111, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33727522

RESUMO

BACKGROUND The aim of the present study was to evaluate the effects of different doses of oxycodone during endoscopic injection sclerotherapy (EIS) for esophageal varices with painless sclerosing agents. MATERIAL AND METHODS A total of 119 patients were randomly divided into 3 groups: Group A, midazolam and 0.075 mg/kg oxycodone (n=40); Group B, midazolam and 0.1 mg/kg oxycodone (n=40); and Group C, midazolam and 0.125 mg/kg oxycodone (n=39). The main observation index was the incidence of body movement during the perioperative period. The secondary indices were additional propofol usage; postoperative analgesic usage; other adverse effects, such as hypoxia, myoclonus, and cough; and satisfaction scores for surgeons and patients. RESULTS The incidence rates for body movement during the perioperative period in groups A, B, and C were 33%, 13%, and 0, respectively (P<0.001). The satisfaction scores for surgeons and patients were highest in Group C (0.125 mg/kg oxycodone). The incidence rates for hypoxia before EIS were 15%, 8%, and 33% (P=0.026) and during EIS were 23%, 3%, and 0% (P<0.001), respectively. There were no significant between-group differences with respect to other adverse effects. CONCLUSIONS The ideal dose of oxycodone for perioperative analgesia during EIS for esophageal varices is 0.125 mg/kg.


Assuntos
Varizes Esofágicas e Gástricas/tratamento farmacológico , Oxicodona/farmacologia , Escleroterapia/métodos , Adulto , China , Relação Dose-Resposta a Droga , Endoscopia/efeitos adversos , Varizes Esofágicas e Gástricas/metabolismo , Feminino , Hemorragia Gastrointestinal/etiologia , Humanos , Incidência , Injeções/efeitos adversos , Cirrose Hepática/complicações , Masculino , Midazolam/farmacologia , Pessoa de Meia-Idade , Oxicodona/uso terapêutico , Período Perioperatório , Estudos Prospectivos , Soluções Esclerosantes/administração & dosagem , Soluções Esclerosantes/efeitos adversos , Escleroterapia/efeitos adversos
7.
Glia ; 68(12): 2674-2692, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32652855

RESUMO

Neuroinflammation driven by interferon-gamma (IFN-γ) and microglial activation has been linked to neurological disease. However, the effects of IFN-γ-activated microglia on hippocampal neurogenesis and behavior are unclear. In the present study, IFN-γ was administered to mice via intracerebroventricular injection. Mice received intraperitoneal injection of ruxolitinib to inhibit the JAK/STAT1 pathway or injection of minocycline to inhibit microglial activation. During a 7-day period, mice were assessed for depressive-like behaviors and cognitive impairment based on a series of behavioral analyses. Effects of the activated microglia on neural stem/precursor cells (NSPCs) were examined, as was pro-inflammatory cytokine expression by activated microglia. We showed that IFN-γ-injected animals showed long-term adult hippocampal neurogenesis reduction, behavior despair, anhedonia, and cognitive impairment. Chronic activation with IFN-γ induces reactive phenotypes in microglia associated with morphological changes, population expansion, MHC II and CD68 up-regulation, and pro-inflammatory cytokine (IL-1ß, TNF-α, IL-6) and nitric oxide (NO) release. Microglia isolated from the hippocampus of IFN-γ-injected mice suppressed NSPCs proliferation and stimulated apoptosis of immature neurons. Inhibiting of the JAK/STAT1 pathway in IFN-γ-injected animals to block microglial activation suppressed microglia-mediated neuroinflammation and neurogenic injury, and alleviated depressive-like behaviors and cognitive impairment. Collectively, these findings suggested that priming of microglia with IFN-γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Targeting microglia by modulating levels of IFN-γ the brain may be a therapeutic strategy for neurodegenerative diseases and psychiatric disorders.


Assuntos
Disfunção Cognitiva , Microglia , Envelhecimento , Animais , Cognição , Citocinas , Depressão/tratamento farmacológico , Hipocampo , Interferon gama , Camundongos , Neurogênese
8.
Natl Sci Rev ; 7(11): 1702-1725, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34691503

RESUMO

Because of their low cost, natural abundance, environmental benignity, plentiful polymorphs, good chemical stability and excellent optical properties, TiO2 materials are of great importance in the areas of physics, chemistry and material science. Much effort has been devoted to the synthesis of TiO2 nanomaterials for various applications. Among them, mesoporous TiO2 materials, especially with hierarchically porous structures, show great potential owing to their extraordinarily high surface areas, large pore volumes, tunable pore structures and morphologies, and nanoscale effects. This review aims to provide an overview of the synthesis and applications of hierarchically mesoporous TiO2 materials. In the first section, the general synthetic strategies for hierarchically mesoporous TiO2 materials are reviewed. After that, we summarize the architectures of hierarchically mesoporous TiO2 materials, including nanofibers, nanosheets, microparticles, films, spheres, core-shell and multi-level structures. At the same time, the corresponding mechanisms and the key factors for the controllable synthesis are highlighted. Following this, the applications of hierarchically mesoporous TiO2 materials in terms of energy storage and environmental protection, including photocatalytic degradation of pollutants, photocatalytic fuel generation, photoelectrochemical water splitting, catalyst support, lithium-ion batteries and sodium-ion batteries, are discussed. Finally, we outline the challenges and future directions of research and development in this area.

9.
Anesthesiology ; 131(5): 1018-1024, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31634245

RESUMO

BACKGROUND: Arterial cannulation in young children can be challenging. Ultrasound guidance using focused acoustic shadowing may be suitable for guiding radial artery puncture in young children. The present research tested the hypothesis that ultrasound guidance using focused acoustic shadowing helps increase the success rate of radial artery cannulation in this population. METHODS: In a double-blinded, parallel-group trial, 79 young children undergoing surgery under general anesthesia were randomly assigned to two groups (1:1 ratio): the traditional ultrasound group and the novel ultrasound group. Young children in the traditional group underwent conventional ultrasound-guided radial artery puncture, whereas those in the novel ultrasound group underwent radial artery puncture guided by acoustic shadowing ultrasound with double developing lines. All radial artery punctures were performed using the short-axis out-of-plane approach. The primary endpoint was the success rate of cannulation at the first attempt. The secondary endpoints included cannulation failure rate, ultrasound location time, and puncture time. RESULTS: The success rate of cannulation at the first attempt in the novel ultrasound group (35 of 39 [90%]) was significantly higher than that in the traditional ultrasound group (24 of 40 [60%]; difference: 30% [95% CI, 12 to 48%], P =0.002). None of the patients in the ultrasound with acoustic shadowing group experienced failure of radial artery puncture and cannulation. The ultrasound location time and puncture time in the ultrasound acoustic shadowing group were significantly lower than that in the traditional ultrasound group (location time: median [interquartile range]: 6 [5, 8] vs. 18 [15, 21] s; puncture time: 24 [15, 41] vs. 40 [23, 56] s). CONCLUSIONS: Acoustic shadowing via the use of double developing lines significantly improved the success rate of radial artery puncture in young children, compared with that achieved with the use of traditional ultrasound guidance.


Assuntos
Cateterismo Periférico/métodos , Artéria Radial/diagnóstico por imagem , Ultrassonografia de Intervenção/métodos , Cateterismo Periférico/normas , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Artéria Radial/cirurgia , Som , Ultrassonografia de Intervenção/normas
10.
Chem Sci ; 10(6): 1664-1670, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30842830

RESUMO

As a benchmark photocatalyst, commercial P25-TiO2 has been widely used for various photocatalytic applications. However, the low surface area and poorly porous structure greatly limit its performance. Herein, uniform ordered mesoporous TiO2 microspheres (denoted as Meso-TiO2-X; X represents the rutile percentage in the resultant microspheres) with controllable anatase/rutile phase junctions and radially oriented mesochannels are synthesized by a coordination-mediated self-assembly approach. The anatase/rutile ratio in the resultant microspheres can be facilely adjusted as desired (rutile percentage: 0-100) by changing the concentration of hydrochloric acid. As a typical one, the as-prepared Meso-TiO2-25 microspheres have a similar anatase/rutile ratio to commercial P25. But the surface area (78.6 m2 g-1) and pore volume (0.39 cm3 g-1) of the resultant microspheres are larger than those of commercial P25. When used as the photocatalyst for H2 generation, the Meso-TiO2-25 delivers high solar-driven H2 evolution rates under air mass 1.5 global (AM 1.5 G) and visible-light (λ > 400 nm), respectively, which are significantly larger than those of commercial P25. This coordination-mediated self-assembly method paves a new way toward the design and synthesis of high performance mesoporous photocatalysts.

11.
Med Sci Monit ; 25: 1566-1571, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816107

RESUMO

BACKGROUND Ultrasound with developing line may by suitable for medical personnel who are inexperienced in the use of ultrasound-guided radial artery puncture. In this trial, we assessed whether this technology could increase the success rate of radial artery puncture performed by interns. MATERIAL AND METHODS Seventy-seven patients undergoing general anesthesia were enrolled and randomly divided into 2 groups: an ultrasound with developing line group and a traditional ultrasound group. All radial artery punctures were performed by interns who received theoretical explanation (including video demonstration of puncture) and on-site guidance puncture once. The primary end-point was the success rate of cannulation at the first attempt and the secondary end-point was cannulation failure rate. RESULTS The success rate of cannulation at the first attempt in ultrasound in the developing line group was significantly higher than that in the traditional ultrasound group (proportion difference: 34.21%, 95% confidence interval [CI], -0.5483 to -0.1334; P=0.0025). However, no significant between-group difference was observed with respect to failure rate (mean difference 95% CI, (-0.0084 to 0.2743; P=0.0866). The ultrasonic location time in the ultrasound with developing line group was significantly lower than that in the traditional ultrasound group (mean difference -12.4 seconds, 95% CI, 10.64 to 13.98 s; P<0.0000). CONCLUSIONS Use of ultrasound with developing line significantly improved the success rate of radial artery puncture performed by interns as compared to that with use of traditional dynamic ultrasound guidance technology.


Assuntos
Cateterismo Periférico/métodos , Artéria Radial/diagnóstico por imagem , Ultrassonografia/métodos , Adulto , China , Feminino , Pessoal de Saúde , Humanos , Internato e Residência , Masculino , Pessoa de Meia-Idade , Médicos , Estudos Prospectivos , Punções/métodos , Ultrassonografia de Intervenção/métodos , Procedimentos Cirúrgicos Vasculares/métodos
12.
iScience ; 3: 149-160, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-30428317

RESUMO

Transition metal oxides/carbon (TMOs/C) composites are important for high-performance lithium-ion batteries (LIBs), but the development of interface-stable TMOs/C composite anodes for robust lithium storage is still a challenge. Herein, mesoporous TiO2/TiC@C composite membranes were synthesized by an in situ carbothermic reduction method. TiC nanodots with high conductivity and electrochemical inactivity at the TiO2-C interface can significantly enhance the electrical conductivity and structural stability of the membranes. Finite element simulations demonstrate that the TiO2/TiC@C membranes can effectively alleviate tensile and compression stress effects upon lithiation, which is beneficial for robust lithium storage. When used as additives and binder-free electrodes, the TiO2/TiC@C membranes show excellent cycling capability and rate performance. Moreover, a flexible full battery can be assembled by employing the TiO2/TiC@C membranes and shows good performance, highlighting the potential of these membranes in flexible electronics. This work opens an avenue to constructing interface-stable composite structures for the next-generation high-performance LIBs.

13.
Anesth Analg ; 127(2): 382-386, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29481430

RESUMO

BACKGROUND: We evaluated the efficacy and gastroenterologist/patient satisfaction of midazolam combined with oxycodone, relative to that of midazolam combined with sufentanil, for anesthesia during endoscopic injection sclerotherapy (EIS) in patients with cirrhosis and esophageal varices. METHODS: Patients with cirrhosis (20-69 years of age), body mass index, 18-25 kg/m, American Society of Anesthesiology patient classification physical status I-II who underwent elective EIS were randomly assigned to 1 of 2 groups. In this prospective, double-blinded, randomized controlled trial, 1 group received midazolam and oxycodone (n = 64), and the other group received midazolam and sufentanil (n = 63). Primary and secondary outcome measures were compared between groups. The primary outcome measure was the incidence of hypoxia. Secondary outcome measures included perioperative limb movement, need for rescue analgesics, need for additional sedative propofol, specified adverse reactions (postoperative myoclonus, nausea, vomiting, dizziness, and drowsiness), gastroenterologist satisfaction, and patient satisfaction with postoperative analgesia. RESULTS: Patients in the midazolam-oxycodone group had 32% fewer episodes of hypoxia than did those in the midazolam-sufentanil group (95% confidence interval [CI], -45% to -18%; P < .001), 36.73% fewer perioperative limb movements (95% CI, -51.73% to -21.73%; P < .001), 19.12% fewer required rescue analgesics (95% CI, -30.85% to -7.40%; P = .002), and less propofol requirement in the perioperative period (before EIS, -17.83%; 95% CI, -33.82% to -1.85%; P = .003; throughout EIS, -36.73%; 95% CI, -51.73% to -21.73%; P < .001). The incidence rates for adverse reactions were similar between groups. Both the gastroenterologist and patients reported higher degrees of satisfaction with oxycodone than with sufentanil. CONCLUSIONS: Oxycodone in combination with midazolam may provide an anesthetic technique that results in fewer episodes of hypoxia and other adverse conditions during EIS.


Assuntos
Analgésicos Opioides/administração & dosagem , Varizes Esofágicas e Gástricas/terapia , Fibrose/terapia , Midazolam/administração & dosagem , Oxicodona/administração & dosagem , Escleroterapia/métodos , Sufentanil/administração & dosagem , Adulto , Idoso , Anestesia , Índice de Massa Corporal , Método Duplo-Cego , Quimioterapia Combinada , Endoscopia , Varizes Esofágicas e Gástricas/complicações , Feminino , Fibrose/complicações , Gastroenterologia , Humanos , Hipnóticos e Sedativos/uso terapêutico , Hipóxia/prevenção & controle , Incidência , Injeções , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Estudos Prospectivos , Adulto Jovem
14.
J Am Chem Soc ; 139(1): 517-526, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936657

RESUMO

Constructing three-dimensional (3-D) hierarchical mesostructures with unique morphology, pore orientation, single-crystal nature, and functionality remains a great challenge in materials science. Here, we report a confined microemulsion self-assembly approach to synthesize an unprecedented type of 3-D highly ordered mesoporous TiO2 superstructure (Level-1), which consists of 1 spherical core and 12 symmetric satellite hemispheres epitaxially growing out of the core vertices. A more complex and asymmetric TiO2 superstructure (Level-2) with 13 spherical cores and up to 44 symmetric satellite hemispheres can also be well manipulated by increasing the size or content of impregnated TiO2 precursor emulsion droplets. The obtained 3-D mesoporous TiO2 superstructures have well-defined bouquet-posy-like topologies, oriented hexagonal mesochannels, high accessible surface area (134-148 m2/g), large pore volume (0.48-0.51 cm3/g), and well single-crystalline anatase walls with dominant (001) active facets. More interestingly, all cylindrical mesopore channels are highly interconnected and radially distributed within the whole superstructures, and all TiO2 nanocrystal building blocks are oriented grown into a single-crystal anatase wall, making them ideal candidates for various applications ranging from catalysis to optoelectronics. As expected, the bouquet-posy-like mesoporous TiO2 superstructure supported catalysts show excellent catalytic activity (≥99.7%) and selectivity (≥96%) in cis-semihydrogenation of various alkynes, exceeding that of commercial TiO2 (P25) supported catalyst by a factor of 10. No decay in the activity was observed for 25 cycles, revealing a high stability of the mesoporous TiO2 superstructure supported catalyst.

15.
J Am Chem Soc ; 138(50): 16533-16541, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27936645

RESUMO

High-power sodium-ion batteries (SIBs) with long-term cycling attract increasing attention for large-scale energy storage. However, traditional SIBs toward practical applications still suffer from low rate capability and poor cycle induced by pulverization and amorphorization of anodes at high rate (over 5 C) during the fast ion insertion/extraction process. The present work demonstrates a robust strategy for a variety of (Sb-C, Bi-C, Sn-C, Ge-C, Sb-Bi-C) freestanding metal-carbon framework thin films via a space-confined superassembly (SCSA) strategy. The sodium-ion battery employing the Sb-C framework exhibits an unprecedented performance with a high specific capacity of 246 mAh g-1, long life cycle (5000 cycles), and superb capacity retention (almost 100%) at a high rate of 7.5 C (3.51A g-1). Further investigation indicates that the unique framework structure enables unusual reversible crystalline-phase transformation, guaranteeing the fast and long-cyclability sodium storage. This study may open an avenue to developing long-cycle-life and high-power SIBs for practical energy applications.

16.
Anal Chim Acta ; 889: 98-105, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26343431

RESUMO

A single glass capillary nanopore-based sensing platform for rapid and selective detection of cupric ions is demonstrated by utilizing polyglutamic acid (PGA) as a non-immobilized probe. The detection is based on the significant decrease of ionic current through nanopore and the reversal of ion current rectification responses induced by the chelated cupric ions on the probes when in the presence of cupric ions. PGA shows high selectivity for detecting cupric ions rather than other metal ions. The sensitivity of the sensing platform can be improved about 1-2 orders of magnitude by employing asymmetric salt gradients during the measurements. And the PGA-based nanopore sensing platform shows excellent regenerability for Cu(2+) sensing applications. In addition, the method is found effective and reliable for the detection of cupric ions in real samples with small volume down to 20 µL. This nanopore-based sensing platform will find promising practical applications for the detection of cupric ions.


Assuntos
Cobre/análise , Técnicas Eletroquímicas , Vidro/química , Nanoporos , Ácido Poliglutâmico/química , Eletrodos , Concentração de Íons de Hidrogênio , Íons/química , Sondas Moleculares/química , Reprodutibilidade dos Testes
17.
Anal Chem ; 87(13): 6868-74, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26027697

RESUMO

Fast and accurate identification of cancer cells from healthy normal cells in a simple, generic way is very crucial for early cancer detection and treatment. Although functional nanoparticles, like fluorescent quantum dots and plasmonic Au nanoparticles (NPs), have been successfully applied for cancer cell imaging and photothermal therapy, they suffer from the main drawback of needing time-consuming targeting preparation for specific cancer cell detection and selective ablation. The lack of a generic and effective method therefore limits their potential high-throughput cancer cell preliminary screening and theranostic applications. We report herein a generic in vitro method for fast, targeting-free (avoiding time-consuming preparations of targeting moiety for specific cancer cells) visual screening and selective killing of cancer cells from normal cells, by using glucose-responsive/-sensitive glucose oxidase-modified Ag/Au nanoshells (Ag/Au-GOx NSs) as a smart plasmonic theranostic agent. The method is generic to some extent since it is based on the distinct localized surface plasmon resonance (LSPR) responses (and colors) of the smart nanoprobe with cancer cells (typically have a higher glucose uptake level) and normal cells.


Assuntos
Técnicas Biossensoriais , Glucose/metabolismo , Nanomedicina Teranóstica , Linhagem Celular Tumoral , Humanos , Nanotecnologia
18.
PLoS One ; 10(5): e0125014, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970485

RESUMO

PURPOSE: To observe the hemodynamic changes of parturients in the combined use of hyperbaric (4 mg) and hypobaric (6 mg) ropivacaine during spinal anesthesia for caesarean section in this randomized double-blind study. METHODS: Parturients (n = 136) undergoing elective cesarean delivery were randomly and equally allocated to receive either combined hyperbaric and hypobaric ropivacaine (Group A) or hyperbaric ropivacaine (Group B). Outcome measures were: hemodynamic characteristics, maximum height of sensory block, time to achieve T8 sensory blockade level, incidence of complications, Apgar scores at 1 and 5 min, and neonatal blood gas analysis. RESULTS: Group A had a lower level of sensory blockade (T6 [T6-T7]) and longer time to achieve T8 sensory blockade level (8 ± 1.3 min) than did patients in Group B (T3 [T2-T4] and 5 ± 1.0 min, respectively; P < 0.001, both). The incidence rates for hypotension, nausea, and vomiting were significantly lower in Group A (13%, 10%, and 3%, respectively) than Group B (66%, 31%, and 13%; P < 0.001, P = 0.003, P = 0.028). CONCLUSIONS: Combined use of hyperbaric (4 mg) and hypobaric (6 mg) ropivacaine significantly decreased the incidences of hypotension and complications in spinal anesthesia for caesarean section by extending induction time and decreasing the level of sensory blockade. TRIAL REGISTRATION: Chinese Clinical Trial Register ChiCTR-TRC-13004622.


Assuntos
Amidas/administração & dosagem , Raquianestesia/métodos , Anestésicos Locais/administração & dosagem , Cesárea , Hemodinâmica/efeitos dos fármacos , Adulto , Amidas/efeitos adversos , Anestésicos Locais/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Hipotensão/induzido quimicamente , Hipotensão/fisiopatologia , Hipotensão/prevenção & controle , Injeções Espinhais , Náusea/induzido quimicamente , Náusea/fisiopatologia , Bloqueio Nervoso/métodos , Gravidez , Estudos Prospectivos , Ropivacaina , Estremecimento/efeitos dos fármacos , Medula Espinal , Vômito/induzido quimicamente , Vômito/fisiopatologia
19.
Nanoscale ; 7(13): 5767-75, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25757912

RESUMO

The use of colloidal semiconductor nanocrystals (NCs), especially those with a core/shell structure, for photocatalytic hydrogen (H2) production from water is currently one of the hottest research fields. Although the ligand on the semiconductor NC surface is crucial to the optical and optoelectronic properties of the NC, the study of the ligand effect on the photocatalytic activity of H2 generation is rarely reported. Herein, we employ nearly monodispersed CdSe/CdS core/shell NCs as a model photocatalytic system, and three kinds of ligands with different numbers of functional thiol groups (i.e., poly(acrylic acid), 3-mercaptopropionic acid and 2,3-dimercaptosuccinic acid) are selected as the ligands to investigate the effect of ligand on the efficiency of H2 photogeneration. The results show that the H2 photogeneration efficiency is highly dependent on the surface ligand of the NCs, and it increases with the increase of the number of the functional thiol groups in the ligand, and correspondingly, the photoluminescence intensity and average fluorescence lifetime, which are measured by steady state and time-resolved fluorescence measurements, are decreased. The surface trap-related charge separation efficiency, which is mediated by surface coating with different ligands, is supposed to cause the distinct ligand-dependent performance in the H2 evolution.

20.
Anal Chem ; 87(6): 3216-21, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25697179

RESUMO

The inner surface of a conical glass nanopipette was modified with ultrathin gold film by a facile one-step photochemical approach, using HAuCl4 and ethanol as common reagents with the aid of UV irradiation. The method is simple, straightforward, time-saving, and environmentally friendly. The morphology and component of the as-prepared ultrathin gold film was thoroughly characterized by transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) analysis, and X-ray photoelectron spectroscopy (XPS). The mechanism of the gold film growth was briefly discussed. Other small photochemical reagents with a hydroxy group, e.g., ethylene glycol, methanol, and glucose, may also work but with a different rate of reaction. The facile ultrathin gold decoration of a single glass nanopipette renders the glass nanopipette-based nanopore platform very easy for surface chemical modifications and potential sensing applications. The success of the gold decoration on the inner surface of the glass nanopore was further confirmed electrochemically by surface modification of a small thiol molecule (cysteine), and the pH (surface charge)-dependent ionic current rectification behaviors through the nanopore were investigated. Due to its facile preparation, the method and the Au-decorated glass nanopore would find promising and extended applications in ultrasensitive detection and biosensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...