Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 752, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390988

RESUMO

Phosphorus solubilizing bacteria (PSB) can promote the level of plant-absorbable phosphorus (P) in agro-ecosystems. However, little attention has been paid to PSB harboring abilities in utilizing multiple phosphorus sources and their potentials for heavy metal immobilization. In this study, we applied the strategy of stepwise acclimation by using Ca3(PO4)2, phytate, FePO4, and AlPO4 as sole P source. We gained 18 PSB possessing abilities of multiple P sources utilization, and these bacteria belonged to eight genera (Acinetobacter, Pseudomonas, Massilia, Bacillus, Arthrobacter, Stenotrophomonas, Ochrobactrum, and Cupriavidus), and clustered to two apparent parts: Gram-positive bacteria and Gram-negative bacteria. The isolate of Acinetobacter pittii gp-1 presented good performance for utilizing Ca3(PO4)2, FePO4, AlPO4, and phytate, with corresponding P solubilizing levels were 250.77, 46.10, 81.99, and 7.91 mg/L PO4 3--P, respectively. The PSB A. pittii gp-1 exhibited good performance for solubilizing tricalcium phosphate in soil incubation experiments, with the highest values of water soluble P and available P were 0.80 and 1.64 mg/L, respectively. Additionally, the addition of A. pittii gp-1 could promote the immobilization of lead (Pb), and the highest Pb immobilization efficiency reached 23%. Simultaneously, we found the increases in abundances of both alkaline phosphatase gene (phoD) and ß-propeller phytase gene (bpp) in strain gp-1 added soils. Besides, we observed the expression up-regulation of both pyrroloquinoline quinone gene (pqq) and polyphosphate kinases gene (ppk), with the highest relative expression levels of 18.18 and 5.23, respectively. We also found the polyphosphate particles using granule staining. To our knowledge, our findings first suggest that the solubilizing of tricalcium phosphate by phosphorus solubilizing bacterium belonging to Acinetobacter is coupled with the synthesis of polyphosphate. Taken together, A. pittii gp-1 could be a good candidate in improving soil fertility and quality.

2.
Sci Total Environ ; 700: 134418, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31629269

RESUMO

Soil pH is an important predictor of bacterial community composition and diversity. Examining the effects of pH on diversity, structure, interaction, and function of rhizosphere bacterial communities in acidic crop soils provide valuable information for knowing potential role of rhizosphere bacteria in crop yield. Here, we collected soils from artificial greenhouses and applied Illumina Miseq sequencing, quantitative PCR techniques, multiple ecological analysis methods, including topological analysis and functional profiling to analyze our data and validate our hypotheses. We found that the soil physicochemical properties, species diversity, and rhizosphere bacterial community composition were significantly affected by the degree of soil acidification (pH < 5.5 and pH > 5.5) but not vegetation type. Additionally, bacterial absolute abundance increased with higher pH. The 18 soil samples were clustered into two distinct groups of pH < 5.5 and pH > 5.5 at the OTU level, and soil pH had more of an effect on bacterial community composition compared to the other physicochemical variables. In addition, rhizosphere bacteria might presented relatively less competition for survival in pH < 5.5 soils, and bacterial community functions, including nutrient (i.e., carbon, nitrogen, phosphorus, and sulphur) cycling-related enzymes and proteins, were downregulated in more acidic soils (pH < 5.5) based on sequence analysis. To our knowledge, this report is the first to show that pH is a key factor affecting the diversity, structure, interaction, and function of rhizosphere bacterial communities in acidic crop soil in artificial greenhouses. Our findings emphasize that community function and structure of rhizosphere bacteria are closely correlated in more acidic soils, and the decreased crop yield may be correlated with attenuation of the function of the rhizosphere bacterial community.


Assuntos
Rizosfera , Microbiologia do Solo , Solo/química , Bactérias , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Microbiota , Nitrogênio , Fósforo
3.
Bioresour Technol ; 297: 122406, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31787513

RESUMO

The objective of this study was to evaluate changes in phosphorus fractions during vegetable waste and chicken manure composting. High throughput sequencing, quantitative PCR, and multiple analysis methods were applied to investigate interconnections among phosphorus fractions, enzyme activity, and phoD-harboring bacterial community composition. We found the highest composting temperature reached 61 °C and phosphorus fractions presented significant differences during a 60-day composting. The content of plant-absorbable phosphorus, including water soluble phosphorus, available phosphorus, and citric acid phosphorus increased by 121%, 87%, and 63%, respectively. Additionally, phoD gene abundance significantly correlated with the activities of nine enzymes. Our findings emphasize that microbial activity plays an important role in phosphorus transformation during composting, and the final composting product could be good biological phosphorus fertilizer. To our knowledge, this is the first report indicating that enzyme activity, community composition and abundance of phoD-harboring bacteria have direct and indirect effects on phosphorus transformation during composting.


Assuntos
Compostagem , Fosfatase Alcalina , Animais , Bactérias , Galinhas , Esterco , Fósforo , Solo , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...