Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(2): 1224-1233, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30155638

RESUMO

In this work, sludge-derived carbon (SC) was innovatively integrated with copper oxide (CuO) on macroporous silicon carbide foams to construct a distinctive catalyst (CuO/SC) with strong catalytic activity, which can effectively activate persulfate (PS) for the removal of methyl mercaptan (CH3SH). The structure and morphology of CuO/SC were investigated by means of XRD, SEM, and EDS. The effects of initial pH values, copper contents, PS dosages, and flow rates on CH3SH removal were also investigated. Under optimal condition, more than 90% of CH3SH was removed by CuO/SC-PS combined system within 10-min reaction due to the synergistic function of CuO and SC. More importantly, on the basis of reactive species trapping and ESR spectroscopy, it is revealed that the responsible reactive species for catalytic CH3SH composition were ·SO4-, ·OH, 1O2, and ·O2- in CuO/SC-PS system. Finally, the possible PS activation scheme of CuO/SC samples was proposed.


Assuntos
Compostos Inorgânicos de Carbono/química , Carbono , Cobre/química , Esgotos , Compostos de Silício/química , Espécies Reativas de Oxigênio , Compostos de Sulfidrila/química
2.
ACS Appl Mater Interfaces ; 10(22): 18693-18708, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29732890

RESUMO

A self-stabilized Z-scheme porous g-C3N4/I3--containing BiOI ultrathin nanosheets (g-C3N4/I3--BiOI) heterojunction photocatalyst with I3-/I- redox mediator was successfully synthesized by a facile solvothermal method coupling with light illumination. The structure and optical properties of g-C3N4/I3--BiOI composites were systematically characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, N2 adsorption/desorption, UV-vis diffuse reflectance spectrum, and photoluminescence. The g-C3N4/I3--BiOI composites, with a heterojunction between porous g-C3N4 and BiOI ultrathin nanosheets, were first applied for the photocatalytic elimination of ppm-leveled CH3SH under light-emitting diode visible light illumination. The g-C3N4/I3--BiOI heterojunction with 10% g-C3N4 showed a dramatically enhanced photocatalytic activity in the removal of CH3SH compared with pure BiOI and g-C3N4 due to its effective interfacial charge transfer and separation. The adsorption and photocatalytic oxidation of CH3SH over g-C3N4/I3--BiOI were deeply explored by in situ diffuse reflectance infrared Fourier transform spectroscopy, and the intermediates and conversion pathways were elucidated and compared. Furthermore, on the basis of reactive species trapping, electron spin resonance and Mott-Schottky experiments, it was revealed that the responsible reactive species for catalytic CH3SH composition were h+, •O2-, and 1O2; thus, the g-C3N4/I3--BiOI heterojunction followed an indirect all-solid state Z-scheme charge-transfer mode with self-stabilized I3-/I- pairs as redox mediator, which could accelerate the separation of photogenerated charge and enhance the redox reaction power of charged carriers simultaneously.

3.
J Hazard Mater ; 344: 1198-1208, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29162299

RESUMO

A heterogeneous catalytic ozonation/membrane filtration (HCOMF) system was fabricated by integrating a flat-plate polyvinylidene fluoride (PVDF) membrane module along with a slurry catalytic ozonation reactor. The performance and catalytic activity of HCOMF was evaluated for degradation of model wastewater containing bisphenol A (BPA) and humid acid (HA) under different permeation flux in long-term continuous experiments. The membrane fouling was investigated by trans-membranous pressure (TMP), membrane filtration resistance, scanning electronic microscopy (SEM), and fluorescence spectra. The results showed that HCOMF system exhibited an excellent and stable catalytic activity in long-term continuous experiments owning to integration of 3D MnO2 hollow microsphere ozone-catalysis with flat-plate membrane filtration. The TMP of HCOMF system didn't increase significantly, and the membrane resistance Rp and Rc declined from 4% and 16% to 1% and 4%, respectively, thus, the membrane fouling of HCOMF system was mitigated compared to MF system. The mitigation of membrane fouling in HCOMF system was attributed to the increase of hydrophilicity of membrane surface and change of HA fractions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...