Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 886, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38286824

RESUMO

Turbulent energy dissipation is a fundamental process in plasma physics that has not been settled. It is generally believed that the turbulent energy is dissipated at electron scales leading to electron energization in magnetized plasmas. Here, we propose a micro accelerator which could transform electrons from isotropic distribution to trapped, and then to stream (Strahl) distribution. From the MMS observations of an electron-scale coherent structure in the dayside magnetosheath, we identify an electron flux enhancement region in this structure collocated with an increase of magnetic field strength, which is also closely associated with a non-zero parallel electric field. We propose a trapping model considering a field-aligned electric potential together with the mirror force. The results are consistent with the observed electron fluxes from ~50 eV to ~200 eV. It further demonstrates that bidirectional electron jets can be formed by the hourglass-like magnetic configuration of the structure.

2.
Nat Commun ; 14(1): 7955, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38040682

RESUMO

Imbalanced Alfvénic turbulence is a universal process playing a crucial role in energy transfer in space,  astrophysical, and laboratory plasmas. A fundamental and long-lasting question about the imbalanced Alfvénic turbulence is how and through which mechanism the energy transfers between scales. Here, we show that the energy transfer of imbalanced Alfvénic turbulence is completed by coherent interactions between Alfvén waves and co-propagating anomalous fluctuations. These anomalous fluctuations are generated by nonlinear couplings instead of linear reflection. We also reveal that the energy transfer of the waves and the anomalous fluctuations is carried out mainly through local-scale and large-scale nonlinear interactions, respectively, responsible for their bifurcated power-law spectra. This work unveils the energy transfer physics of imbalanced Alfvénic turbulence, and advances the understanding of imbalanced Alfvénic turbulence observed by Parker Solar Probe in the inner heliosphere.

3.
Exp Astron (Dordr) ; 54(2-3): 473-519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36915623

RESUMO

The smallest characteristic scales, at which electron dynamics determines the plasma behaviour, are the next frontier in space and astrophysical plasma research. The analysis of astrophysical processes at these scales lies at the heart of the research theme of electron-astrophysics. Electron scales are the ultimate bottleneck for dissipation of plasma turbulence, which is a fundamental process not understood in the electron-kinetic regime. In addition, plasma electrons often play an important role for the spatial transfer of thermal energy due to the high heat flux associated with their velocity distribution. The regulation of this electron heat flux is likewise not understood. By focussing on these and other fundamental electron processes, the research theme of electron-astrophysics links outstanding science questions of great importance to the fields of space physics, astrophysics, and laboratory plasma physics. In this White Paper, submitted to ESA in response to the Voyage 2050 call, we review a selection of these outstanding questions, discuss their importance, and present a roadmap for answering them through novel space-mission concepts.

4.
Nat Commun ; 11(1): 5616, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154395

RESUMO

NASA's Magnetospheric Multi-Scale (MMS) mission is designed to explore the proton- and electron-gyroscale kinetics of plasma turbulence where the bulk of particle acceleration and heating takes place. Understanding the nature of cross-scale structures ubiquitous as magnetic cavities is important to assess the energy partition, cascade and conversion in the plasma universe. Here, we present theoretical insight into magnetic cavities by deriving a self-consistent, kinetic theory of these coherent structures. By taking advantage of the multipoint measurements from the MMS constellation, we demonstrate that our kinetic model can utilize magnetic cavity observations by one MMS spacecraft to predict measurements from a second/third spacecraft. The methodology of "observe and predict" validates the theory we have derived, and confirms that nested magnetic cavities are self-organized plasma structures supported by trapped proton and electron populations in analogous to the classical theta-pinches in laboratory plasmas.

5.
Science ; 369(6504): 694-697, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32764071

RESUMO

Understanding many physical processes in the solar atmosphere requires determination of the magnetic field in each atmospheric layer. However, direct measurements of the magnetic field in the Sun's corona are difficult to obtain. Using observations with the Coronal Multi-channel Polarimeter, we have determined the spatial distribution of the plasma density in the corona and the phase speed of the prevailing transverse magnetohydrodynamic waves within the plasma. We combined these measurements to map the plane-of-sky component of the global coronal magnetic field. The derived field strengths in the corona, from 1.05 to 1.35 solar radii, are mostly 1 to 4 gauss. Our results demonstrate the capability of imaging spectroscopy in coronal magnetic field diagnostics.

6.
Mol Genet Metab ; 93(2): 145-59, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18029214

RESUMO

Glycerol kinase has several diverse activities in mammalian cells. Glycerol kinase deficiency is a complex, single-gene, inborn error of metabolism wherein no genotype-phenotype correlation has been established. Since glycerol kinase has been suggested to exhibit additional activities than glycerol phosphorylation, expression level perturbation in this enzyme may affect cellular physiology globally. To investigate this possibility, we conducted metabolic investigations of wild-type and two glycerol kinase-overexpressing H4IIE rat hepatoma cell lines constructed in this study. The glycerol kinase-overexpressing cell lines exhibited a significantly higher consumption of carbon sources per cell, suggesting excess carbon expenditure. Furthermore, we quantified intracellular metabolic fluxes by employing stable isotope 13C labeling with a mathematically designed substrate mixture, gas chromatography-mass spectrometry, and comprehensive isotopomer balancing. This flux analysis revealed that the pentose phosphate pathway flux in the glycerol kinase-overexpressing cell lines was 2-fold higher than that in the wild-type, in addition to subtler flux changes in other pathways of carbohydrate metabolism. Furthermore, the activity and transcript level of the lipogenic enzyme glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the pentose phosphate pathway, were also about 2-fold higher than that of the wild-type; these data corroborate the flux analysis results. This study shows that glycerol kinase affects carbon metabolism globally, possibly through its additional functions, and highlights glycerol kinase's multifaceted role in cellular physiology.


Assuntos
Glicerol Quinase/genética , Glicerol Quinase/metabolismo , Neoplasias Hepáticas Experimentais/enzimologia , Neoplasias Hepáticas Experimentais/genética , Animais , Metabolismo dos Carboidratos , Isótopos de Carbono , Linhagem Celular Tumoral , Expressão Gênica , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Humanos , Neoplasias Hepáticas Experimentais/metabolismo , Modelos Biológicos , Via de Pentose Fosfato , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...