Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 185: 116099, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739696

RESUMO

In addition to surface water and groundwater, rainwater is used as an important drinking water source in many parts of the world, especially in areas with serious water pollution or insufficient water resources. Conventional drinking water treatment technologies can remove dissolved organic matter and therefore reduce the formation of disinfection by-products (DBPs) during subsequent disinfection using surface water or groundwater as drinking water sources. However, little information has been known about the effect of conventional water treatment processes on DBP formation when rainwater is used as drinking water source. This study evaluated CX3R-type DBP precursors removal from rainwater by conventional drinking water treatments and the corresponding decrease of CX3R-type DBP (trihalomethanes (THMs), haloaldehydes (HALs), haloacetonitriles (HANs) and haloacetamides (HAMs)) formation and toxicity during the subsequent chlor(am)ination. The result showed that both sand filtration (SF) and activated carbon filtration (GAC) were able to remove DBP precursors and GAC outperformed SF, but no DBP precursors removal was observed during coagulation-sedimentation treatment. Among all treatments, SF + GAC was the most effective for DBP precursors removal, with removal efficiencies of 64.2% DOC, 98% DON and 76.6% UV254. Correspondingly, both SF and GAC decreased the formation of THMs, HALs, HANs and HAMs, and GAC performed better than SF. The combination of SF and GAC, especially SF + GAC, greatly decreased DBP formation, with average reduction of 79.2% and 85% during chlorination and chloramination respectively. After different treatments, the comprehensive toxicity risk of CX3R-type DBPs was all reduced, among which GAC + SF exhibited superior performance. Generally, the main contribution of integrated toxicity was HANs during chlor(am)ination. The formation potential of THMs, HALs, HANs and HAMs and the corresponding integrated toxicity were greater during chlorination than that during chloramination. Therefore, the combination of GAC and chloramination was promising in mitigating the comprehensive toxicity risk of THMs, HALs, HANs and HAMs for rainwater.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfetantes/análise , Desinfecção , Halogenação , Trialometanos , Poluentes Químicos da Água/análise
2.
Water Res ; 171: 115368, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31841956

RESUMO

Disinfection by-products (DBPs) precursors can be regarded mainly from the drinking water sources and the water treatment processes. A recent study showed that dissolved organic matter (DOM) in atmosphere is an important precursor source of DBPs through atmospheric wet deposition. However, little information is available on the characteristics of DOM derived from dry deposition particulate matter (PM) and the impact of dry deposition on CX3R-type DBP formation. This study determined whether dry deposition directly contributed the production of DBPs during chlor (am)ination and investigated the mechanism behind the contribution based on the combination of the resin and membrane for fractionating DOM fractions. The results showed that the hydrophilic fraction (HPI) contributed the most DOM and low molecular weight DOM (<10 kDa) was the main component of HPI. In addition, aromatic proteins and soluble microbial products-like compounds were the dominant fluorescent species in DOM derived from PM, and <10 kDa transphilic was the most abundant. The concentrations of C-DBPs and N-DBPs in disinfected PM solution were trihalomethanes (THMs) > haloacetic acids (HAAs) > haloaldehydes and haloacetamides > haloacetonitriles > halonitromethanes for both chlorination and chloramination. The main contributors of calculated toxicity are transphilic and hydrophobic in chlorination and chloramination respectively. Dry deposition PM was deduced to contribute DOM and DBP formation after chlorination in surface water, especially THMs and HAAs. These results presented herein provide key information for controlling DBPs from the perspectives of atmospheric dry deposition, especially in the case of heavy air pollution.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Trialometanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...