Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(8): e2307819, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797210

RESUMO

The practical applications of alkaline zinc-based batteries are challenged by poor rechargeability with an insufficient zinc utilization ratio. Herein, a sphere-confined reversible zinc deposition behavior from a free-standing Zn anode is reported, which is composed of bi-continuous ZnO-protected interconnected and hollowed Zn microspheres by the Kirkendall effect. The cross-linked Zn network with in situ formed outer ZnO shell and inner hollow space not only inhibits side reactions but also ensures long-range conductivity and accommodates shape change, which induces preferential reversible zinc dissolution-deposition process in the inner space and maintains structural integrity even under high zinc utilization ratio. As a result, the Zn electrode can be stably cycled for 390 h at a high current density of 20 mA cm-2 (60% depth of discharge), outperforming previously reported alkaline Zn anodes. A stable zinc-nickel oxide hydroxide battery with a high cumulative capacity of 8532 mAh cm-2 at 60% depth of discharge is also demonstrated.

2.
Small ; 20(5): e2305855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759418

RESUMO

Solar interfacial evaporation is a promising method for solving the global shortage of fresh water. While 2D evaporators can efficiently localize solar-converted heat at the thin layer of the water-air interface, 3D solar evaporators can maximize energy reutilization while maintaining effective mass transport ability, few studies are conducted to explore the effect of gradient porosity on evaporation performance. In this study, a multifield assisted strategy based on a gradient 3D structure with high tortuosity is proposed, which creates a thermal field environment for efficient evaporation through high absorption of sunlight and excellent photothermal conversion and uses the gradient structure to optimize the internal pressure field to enhance water evaporation and transport. This hierarchically nanostructured solar absorber, with porosity inhomogeneity-induced pressure gradient and optimized temperature management, is a valuable design idea for manufacturing a more efficient 3D solar evaporator in the field of seawater desalination. Owing to the understanding of optimizing the dimension by various simulation parameters, the evaporation efficiencies of such structures are found to be 165.7%, suppressing the most evaporator. Moreover, it can provide new ideas and references for the fields of mass transfer and thermal management.

3.
Adv Mater ; 36(4): e2306090, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37543995

RESUMO

The field of flexible electronics is a crucial driver of technological advancement, with a strong connection to human life and a unique role in various areas such as wearable devices and healthcare. Consequently, there is an urgent demand for flexible energy storage devices (FESDs) to cater to the energy storage needs of various forms of flexible products. FESDs can be classified into three categories based on spatial dimension, all of which share the features of excellent electrochemical performance, reliable safety, and superb flexibility. In this review, the application scenarios of FESDs are introduced and the main representative devices applied in disparate fields are summarized first. More specifically, it focuses on three types of FESDs in matched application scenarios from both structural and material aspects. Finally, the challenges that hinder the practical application of FESDs and the views on current barriers are presented.

4.
Front Pharmacol ; 13: 976757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278149

RESUMO

Spinal cord injury (SCI) is a devastating central nervous system disease, caused by physical traumas. With the characteristic of high disability rate, catastrophic dysfunction, and enormous burden on the patient's family, SCI has become a tough neurological problem without efficient treatments. Contemporarily, the pathophysiology of SCI comprises complicated and underlying mechanisms, in which oxidative stress (OS) may play a critical role in contributing to a cascade of secondary injuries. OS substantively leads to ion imbalance, lipid peroxidation, inflammatory cell infiltration, mitochondrial disorder, and neuronal dysfunction. Hence, seeking the therapeutic intervention of alleviating OS and appropriate antioxidants is an essential clinical strategy. Previous studies have reported that traditional Chinese medicine (TCM) has antioxidant, anti-inflammatory, antiapoptotic and neuroprotective effects on alleviating SCI. Notably, the antioxidant effects of some metabolites and compounds of TCM have obtained numerous verifications, suggesting a potential therapeutic strategy for SCI. This review aims at investigating the mechanisms of OS in SCI and highlighting some TCM with antioxidant capacity used in the treatment of SCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...