Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1264926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532931

RESUMO

Hemophagocytic lymphohistiocytosis (HLH), also known as hemophagocytic syndrome (HPS), is a benign histiocytosis with hyperreactive proliferation of the mononuclear phagocyte system caused by immune function abnormalities, which often occurs under the background of genetic mutations, inflammation, infection or tumors. Because the research on malignancy-associated HLH (M-HLH) is focused on hematological malignancies, reports on HLH secondary to solid tumors are rare. In this case, we report a 14-year-old girl who developed HLH during treatment for intracranial multifocal germinoma, and the disease was controlled after hormone combined with etoposide(VP-16) and other related treatments. To our knowledge, there have been no documented cases of HLH caused by intracranial multifocal germinoma.

2.
ACS Biomater Sci Eng ; 10(4): 2498-2509, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531866

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) offer versatile applications in tissue engineering and drug screening. To facilitate the monitoring of hiPSC cardiac differentiation, a noninvasive approach using convolutional neural networks (CNNs) was explored. HiPSCs were differentiated into cardiomyocytes and analyzed using the quantitative real-time polymerase chain reaction (qRT-PCR). The bright-field images of the cells at different time points were captured to create the dataset. Six pretrained models (AlexNet, GoogleNet, ResNet 18, ResNet 50, DenseNet 121, VGG 19-BN) were employed to identify different stages in differentiation. VGG 19-BN outperformed the other five CNNs and exhibited remarkable performance with 99.2% accuracy, recall, precision, and F1 score and 99.8% specificity. The pruning process was then applied to the optimal model, resulting in a significant reduction of model parameters while maintaining high accuracy. Finally, an automation application using the pruned VGG 19-BN model was developed, facilitating users in assessing the cell status during the myocardial differentiation of hiPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Diferenciação Celular , Algoritmos , Redes Neurais de Computação
3.
Front Immunol ; 13: 977338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159818

RESUMO

Necroptosis is a novel type of regulated cell death that is intimately associated with a variety of tumors. However, how necroptosis affects the identification of gastric cancer (GC) remains unclear. Here we seek to find new potential necroptosis-related biomarkers to predict GC prognosis and immunotherapy effect. We used Cox analysis to obtain shared prognostic markers related to necroptosis from five datasets (TCGA and four GEO datasets). Then, a necroptosis-related gene prognostic score (NRGPS) system was constructed using LASSO Cox regression, NRGPS consisting of three necroptosis-related mRNAs (AXL, RAI14, and NOX4) was identified, 31 pairs of GC and adjacent normal tissues from the Second Hospital of Harbin Medical University were collected and Real-Time Quantitative PCR (RT-qPCR) was used to detect the relative expression levels of the three necroptosis-related mRNAs, and external validation was performed on four GEO datasets (GSE84437, GSE26901, GSE62254 and GSE15459). In this study, Overall survival (OS) in the high-NRGPS group was significantly lower than in the low-NRGPS group. Cox regression analyses showed that NRGPS was an independent prognostic variable. Tumor-mutation-burden (TMB), tumor microenvironment (TME), microsatellite instability (MSI), and Tumor Immune Dysfunction and Exclusion (TIDE) scoring were used as predictors of the immunotherapy response. A cancer-friendly immune microenvironment, a high TIDE score, a low TMB, and a low MSI were all characteristics of the high-NRGPS group, and they all consistently showed that the issues seen there are related to immune escape in GC. The combination of three candidate genes may be an effective method for diagnostic assessment of GC prognosis and immunotherapy efficacy.


Assuntos
Neoplasias Gástricas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Fatores Imunológicos , Imunoterapia , Instabilidade de Microssatélites , Necroptose/genética , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/terapia , Microambiente Tumoral/genética
4.
Front Pharmacol ; 12: 702218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385921

RESUMO

GABA is a major inhibitory neurotransmitter in the mammalian central nervous system (CNS). Inhibitory GABAA channel circuits in the dorsal spinal cord are the gatekeepers of the nociceptive input from the periphery to the CNS. Weakening of these spinal inhibitory mechanisms is a hallmark of chronic pain. Yet, recent studies have suggested the existence of an earlier GABAergic "gate" within the peripheral sensory ganglia. In this study, we performed systematic investigation of plastic changes of the GABA-related proteins in the dorsal root ganglion (DRG) in the process of neuropathic pain development. We found that chronic constriction injury (CCI) induced general downregulation of most GABAA channel subunits and the GABA-producing enzyme, glutamate decarboxylase, consistent with the weakening of the GABAergic inhibition at the periphery. Strikingly, the α5 GABAA subunit was consistently upregulated. Knock-down of the α5 subunit in vivo moderately alleviated neuropathic hyperalgesia. Our findings suggest that while the development of neuropathic pain is generally accompanied by weakening of the peripheral GABAergic system, the α5 GABAA subunit may have a unique pro-algesic role and, hence, might represent a new therapeutic target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...