Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 257: 119250, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844031

RESUMO

Aquatic ecosystems are being increasingly polluted by microplastics (MPs), which calls for an understanding of how MPs affect microbially driven biogenic element cycling in water environments. A 28-day incubation experiment was conducted using freshwater lake water added with three polymer types of MPs (i.e., polyethylene, polypropylene, polystyrene) separately or in combination at a concentration of 1 items/L. The effects of various MPs on microbial communities and functional genes related to carbon, nitrogen, phosphorus, and sulfur cycling were analyzed using metagenomics. Results showed that Sphingomonas and Novosphingobium, which were indicator taxa (genus level) in the polyethylene treatment group, made the largest functional contribution to biogenic element cycling. Following the addition of MPs, the relative abundances of genes related to methane oxidation (e.g., hdrD, frhB, accAB) and denitrification (napABC, nirK, norB) increased. These changes were accompanied by increased relative abundances of genes involved in organic phosphorus mineralization (e.g., phoAD) and sulfate reduction (cysHIJ), as well as decreased relative abundances of genes involved in phosphate transport (phnCDE) and the SOX system. Findings of this study underscore that MPs, especially polyethylene, increase the potential of greenhouse gas emissions (CO2, N2O) and water pollution (PO43-, H2S) in freshwater lakes at the functional gene level.

2.
Nano Lett ; 24(18): 5513-5520, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38634689

RESUMO

P-type self-doping is known to hamper tin-based perovskites for developing high-performance solar cells by increasing the background current density and carrier recombination processes. In this work, we propose a gradient homojunction structure with germanium doping that generates an internal electric field across the perovskite film to deplete the charge carriers. This structure reduces the dark current density of perovskite by over 2 orders of magnitude and trap density by an order of magnitude. The resultant tin-based perovskite solar cells exhibit a higher power conversion efficiency of 13.3% and excellent stability, maintaining 95% and 85% of their initial efficiencies after 250 min of continuous illumination and 3800 h of storage, respectively. We reveal the homojunction formation mechanism using density functional theory calculations and molecular level characterizations. Our work provides a reliable strategy for controlling the spatial energy levels in tin perovskite films and offers insights into designing intriguing lead-free perovskite optoelectronics.

3.
Nutrients ; 16(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398837

RESUMO

2'-Hydroxychalcone is a hydroxyl derivative of chalcones, which are biosynthetic precursors of flavonoids and rich in the human diet. The anticancer activity of 2'-hydroxychalcone has been reported in several cancers but remains to be investigated in breast cancer. In the current study, 2'-hydroxychalcone showed significant cytotoxicity against breast cancer cell lines MCF-7 and CMT-1211. It could inhibit breast cancer cell proliferation, migration, and invasion in vitro and suppress tumor growth and metastasis in vivo. Mechanistic investigation revealed that the NF-κB pathway was significantly inhibited by 2'-hydroxychalcone treatment accompanied by an excessive intracellular accumulation of reactive oxygen species, induction of endoplasmic reticulum stress, and activation of JNK/MAPK. In addition, 2'-hydroxychalcone elevated the autophagic levels in breast cancer cells equipped with increasing numbers of autophagy vesicles and complete autophagic flux. Finally, autophagy-dependent apoptosis was observed in 2'-hydroxychalcone-induced cell death. In conclusion, 2'-hydroxychalcone enhances the autophagic levels and induces apoptosis in breast cancer cells, which could be contributed to the inhibition of the pro-survival NF-κB signaling, indicating a promising potential for 2'-hydroxychalcone in future anticancer drug development.


Assuntos
Neoplasias da Mama , Chalconas , Humanos , Feminino , NF-kappa B/metabolismo , Chalconas/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Apoptose , Autofagia , Espécies Reativas de Oxigênio/metabolismo
4.
Adv Mater ; 36(3): e2306512, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837252

RESUMO

Red phosphorus (P) as an anode material of potassium-ion batteries possesses ultra-high theoretical specific capacity (1154 mAh g-1 ). However, owing to residual white P during the preparation and sluggish kinetics of K-P alloying limit its practical application. Seeking an efficient catalyst to address the above problems is crucial for the secure preparation of red P anode with high performance. Herein, through the analysis of the activation energies in white P polymerization, it is revealed that the highest occupied molecular orbital energy of I2 (-7.40 eV) is in proximity to P4 (-7.25 eV), and the lowest unoccupied molecular orbital energy of I2 molecule (-4.20 eV) is lower than that of other common non-metallic molecules (N2 , S8 , Se8 , F2 , Cl2 , Br2 ). The introduction of I2 can thus promote the breaking of the P─P bond and accelerate the polymerization of white P molecules. Besides, the ab initio molecular dynamics simulations show that I2 can enhance the kinetics of P-K alloying. The as-obtained red P/C composites with I2 deliver excellent cycling stability (358 mAh g-1 after 1200 cycles at 1 A g-1 ). This study establishes catalysis as a promising pathway to tackle the challenges of P anode for alkali metal ion batteries.

5.
Water Res ; 245: 120647, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738938

RESUMO

Deep reservoirs vary in their hydrostatic pressure owing to artificial water level control. The potential migration of phosphorus (P) in reservoir sediments raises the risk of harmful algal blooms. To ascertain the mechanisms of endogenous P release in reservoirs, we characterised aquatic microbial communities associated with coupled iron (Fe), P and sulphur (S) cycling at the sediment-water interface. The responses of microbial communities to hydrostatic pressures of 0.2-0.7 mega pascals (MPa; that is, micro-pressures) were investigated through a 30-day simulation experiment. Our findings unravelled a potential mechanism that micro-pressure enhanced the solubilisation of Fe/aluminium (Al)-bound P caused by microbially-driven sulphate reduction, leading to endogenous P release in the deep reservoir. Although the vertical distribution of labile Fe was not affected by pressure changes, we did observe Fe resupply at sediment depths of 2-5 cm. Metagenomic analysis revealed increased abundances of functional genes for P mineralisation (phoD, phoA), P solubilisation (pqqC, ppx-gppA) and sulphate reduction (cysD, cysC) in sediments subjected to micro-pressure, which contrasted with the pattern of S oxidation gene (soxB). There was a tight connection between P and S cycling-related microbial communities, based on significant positive correlations between labile element (P and S) concentrations and functional gene (phoD, cysD) abundances. This provided strong support that Fe-P-S coupling processes were governed by micro-pressure through modulation of P and S cycling-related microbial functions. Key taxa involved in P and S cycling (for example, Bradyrhizobium, Methyloceanibacter) positively responded to micro-pressure and as such, indirectly drove P release from sediments by facilitating P mineralisation and solubilisation coupled with sulphate reduction.


Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/análise , Fosfatos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Monitoramento Ambiental , Água/análise , Sulfatos
6.
Mol Cell ; 83(19): 3502-3519.e11, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751742

RESUMO

Cyst(e)ine is a key precursor for the synthesis of glutathione (GSH), which protects cancer cells from oxidative stress. Cyst(e)ine is stored in lysosomes, but its role in redox regulation is unclear. Here, we show that breast cancer cells upregulate major facilitator superfamily domain containing 12 (MFSD12) to increase lysosomal cyst(e)ine storage, which is released by cystinosin (CTNS) to maintain GSH levels and buffer oxidative stress. We find that mTORC1 regulates MFSD12 by directly phosphorylating residue T254, while mTORC1 inhibition enhances lysosome acidification that activates CTNS. This switch modulates lysosomal cyst(e)ine levels in response to oxidative stress, fine-tuning redox homeostasis to enhance cell fitness. MFSD12-T254A mutant inhibits MFSD12 function and suppresses tumor progression. Moreover, MFSD12 overexpression correlates with poor neoadjuvant chemotherapy response and prognosis in breast cancer patients. Our findings reveal the critical role of lysosomal cyst(e)ine storage in adaptive redox homeostasis and suggest that MFSD12 is a potential therapeutic target.

7.
Environ Res ; 235: 116606, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429396

RESUMO

The overloading of the sewer network caused by unwarranted infiltration of stormwater may lead to waterlogging and environmental pollution. The accurate identification of infiltration and surface overflow is essential to predict and reduce these risks. To retrieve the limitations of infiltration estimation and the failure of surface overflow perception using the common stormwater management model (SWMM), a surface overflow and underground infiltration (SOUI) model is proposed to estimate the infiltration and overflow. First, the precipitation, water level of the manhole, surface water depth and images of the overflowing point, and volume at the outfall are collected. Then, the surface waterlogging area is identified based on computer vision to reconstruct the local digital elevation model (DEM) by spatial interpolation, and the relationship between the waterlogging depth, area and volume is established to identify the real-time overflow. Next, a continuous genetic algorithm optimization (CT-GA) model is proposed for the underground sewer system to determine the inflow rapidly. Finally, surface and underground flow estimations are combined to perceive the state of the urban sewer network accurately. The results show that, compared with the common SWMM simulation, the accuracy of the water level simulation is improved by 43.5% during the rainfall period, and the time cost of the computational optimization is reduced by 67.5%. The proposed method can effectively diagnose the operation state and overflow risk of the sewer networks in real time during rainfall seasons.


Assuntos
Chuva , Esgotos , Movimentos da Água , Poluição Ambiental , Água
8.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37463446

RESUMO

Human epidermal growth factor receptor 2-targeted (HER2-targeted) therapy is the mainstay of treatment for HER2+ breast cancer. However, the proteolytic cleavage of HER2, or HER2 shedding, induces the release of the target epitope at the ectodomain (ECD) and the generation of a constitutively active intracellular fragment (p95HER2), impeding the effectiveness of anti-HER2 therapy. Therefore, identifying key regulators in HER2 shedding might provide promising targetable vulnerabilities against resistance. In the current study, we found that upregulation of dolichyl-phosphate N-acetylglucosaminyltransferase (DPAGT1) sustained high-level HER2 shedding to confer trastuzumab resistance, which was associated with poor clinical outcomes. Upon trastuzumab treatment, the membrane-bound DPAGT1 protein was endocytosed via the caveolae pathway and retrogradely transported to the ER, where DPAGT1 induced N-glycosylation of the sheddase - ADAM metallopeptidase domain 10 (ADAM10) - to ensure its expression, maturation, and activation. N-glycosylation of ADAM10 at N267 protected itself from ER-associated protein degradation and was essential for DPAGT1-mediated HER2 shedding and trastuzumab resistance. Importantly, inhibition of DPAGT1 with tunicamycin acted synergistically with trastuzumab treatment to block HER2 signaling and reverse resistance. These findings reveal a prominent mechanism for HER2 shedding and suggest that targeting DPAGT1 might be a promising strategy against trastuzumab-resistant breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais , Proteínas de Membrana/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
9.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3797-3807, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37347266

RESUMO

Acute lung injury (ALI) and sepsis are complicated syndromes that are often left untreated in critically ill patients. 6-Gingerol is a phenolic phytochemical compound that is found in fresh ginger, has pharmacological effects against inflammation. This study explored the roles of 6-gingerol in a mouse model of acute lung injury caused by lipopolysaccharide (LPS) and RAW-264.7 cells inflammation. The LPS-induced animal model underwent histopathological examinations, and RAW-264.7 cells viability was determined by Cell counting Kit-8 (CCk-8) assay. Additionally, qRT-PCR, Immunofluorescence, Western blot, and ELISA were used in vivo and in vitro to identify inflammatory factors and proteins associated with NF-κB and MAPK signaling pathways. In a histological examination 6-gingerol exhibited protective effects. Moreover, 6-gingerol elevated cell viability and downregulated inflammatory factors Interlukin-1ß (IL-1ß), Interlukin-6 (IL-6) and Tumor necrosis factor-α (TNF-α) in LPS-treated RAW-264.7 cells. Furthermore, 6-gingerol decreased phosphorylation of P65, P38 and the level of JNK in NF-κB and MAPK pathways. Importantly, 6-gingerol increased transcript abundance of miR-322-5p which suppressed by LPS and miR-322-5p downregulation negated the protective functions of 6-gingerol. The protective activity of 6-gingerol was mediated by miR-322-5p up-regulation.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Células RAW 264.7 , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Lesão Pulmonar Aguda/patologia
10.
Water Res ; 242: 120185, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327543

RESUMO

Microplastics originate from the physical, chemical, or biological degradation of plastics in the environment. Once ingested by organisms at the bottom of the food chain, microplastics are passed on to organisms at higher trophic levels, posing a threat to human health. The distribution of microplastics and the metabolic pathways involved in their microbial degradation in surface sediments of drinking water reservoirs are still poorly understood. This study analyzed the occurrence patterns of microplastics and microbial community structure associated with microplastic biodegradation in surface sediments from a deep reservoir at various hydrostatic pressures. Based on the results of Fourier-transform and laser direct infrared spectroscopy, elevating the pressure resulted in altered sizes and shapes of microplastics in sediment samples with the presence of microorganisms. The influence of hydrostatic pressure on small-sized microplastics (20-500 µm) was pronounced. For instance, high pressure accelerated the breakdown of fibers, pellets, and fragments into smaller-sized microplastics. In particular, the mean size of polyethylene terephthalate microplastics decreased from 425.78 µm at atmospheric pressure to 366.62 µm at 0.7 Mpa. Metagenomic analysis revealed an increase in the relative abundances of plastic-degrading genera, such as Rhodococcus, Flavobacterium, and Aspergillus, in response to elevated pressures. Eight functional genes for biodegradation of polystyrene, polyethylene, and polyethylene terephthalate microplastics were annotated, including paaK, ladA, tphA3. Of these, tphA3 gene abundance was negatively influenced by hydrostatic pressure, providing direct evidence for the pathway by which microbial metabolism of polyethylene terephthalate led to decreased microplastic size under high pressure conditions. This study presents novel insights into hydrostatic pressure-driven microbial community structure, functional gene abundance, and key metabolic pathways associated with biodegradation of microplastics in reservoir sediments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos/análise , Pressão Hidrostática , Polietilenotereftalatos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química
11.
Genomics ; 115(4): 110660, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257521

RESUMO

Canine mammary tumor (CMT) are the second most common tumor in dogs. Exosomes can act as biomarkers for the early diagnosis of tumors, and also be involved in the pathogenesis and metastasis mechanism of tumors. The expression profile of exosomal RNA revealed that there were a total of 5547 differentially expressed mRNAs, and 196 differentially expressed lncRNAs. GO and KEGG enrichment analysis found that the differentially expressed mRNAs and lncRNA target genes were associated with metabolic processes, DNA replication, cell proliferation, cell junction, and cell adhesion. In conclusion, this study revealed lncRNA and mRNA expression profiles in exosomes derived from plasma of CMT and further annotated their potential functions. The data obtained in this study will also provide valuable resources for understanding lncRNA information in plasma exosomes of dogs with CMT, and contribute to the study of early diagnostic markers and pathogenesis of CMT.


Assuntos
Exossomos , RNA Longo não Codificante , Cães , Animais , Perfilação da Expressão Gênica , Exossomos/genética , Exossomos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , RNA-Seq
12.
Cell Rep ; 42(6): 112542, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37210725

RESUMO

Alternative splicing (AS) is a critical mechanism for the aberrant biogenesis of long non-coding RNA (lncRNA). Although the role of Wnt signaling in AS has been implicated, it remains unclear how it mediates lncRNA splicing during cancer progression. Herein, we identify that Wnt3a induces a splicing switch of lncRNA-DGCR5 to generate a short variant (DGCR5-S) that correlates with poor prognosis in esophageal squamous cell carcinoma (ESCC). Upon Wnt3a stimulation, active nuclear ß-catenin acts as a co-factor of FUS to facilitate the spliceosome assembly and the generation of DGCR5-S. DGCR5-S inhibits TTP's anti-inflammatory activity by protecting it from PP2A-mediated dephosphorylation, thus fostering tumor-promoting inflammation. Importantly, synthetic splice-switching oligonucleotides (SSOs) disrupt the splicing switch of DGCR5 and potently suppress ESCC tumor growth. These findings uncover the mechanism for Wnt signaling in lncRNA splicing and suggest that the DGCR5 splicing switch may be a targetable vulnerability in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , RNA Longo não Codificante/genética , Neoplasias Esofágicas/genética , Inflamação/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética
13.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903133

RESUMO

The pouring time interval is the decisive factor of dual-liquid casting for bimetallic productions. Traditionally, the pouring time interval is fully determined by the operator's experience and on-site observation. Thus, the quality of bimetallic castings is unstable. In this work, the pouring time interval of dual-liquid casting for producing low alloy steel/high chromium cast iron (LAS/HCCI) bimetallic hammerheads is optimized via theoretical simulation and experimental verification. The relevancies of interfacial width and bonding strength to pouring time interval are, respectively, established. The results of bonding stress and interfacial microstructure indicate that 40 s is the optimum pouring time interval. The effects of interfacial protective agent on interfacial strength-toughness are also investigated. The addition of the interfacial protective agent yields an increase of 41.5% in interfacial bonding strength and 15.6% in toughness. The optimum dual-liquid casting process is used to produce LAS/HCCI bimetallic hammerheads. Samples cut from these hammerheads show excellent strength-toughness (1188 Mpa for bonding strength and 17 J/cm2 for toughness). The findings could be a reference for dual-liquid casting technology. They are also helpful for understanding the formation theory of the bimetal interface.

14.
Nanoscale Adv ; 5(7): 2096-2101, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36998662

RESUMO

The exfoliation of van der Waals (vdW) materials has been widely used to fabricate two-dimensional (2D) materials. However, the exfoliation of vdW materials to isolate atomically thin nanowires (NWs) is an emerging research topic. In this letter, we identify a large class of transition metal trihalides (TMX3), which have one-dimensional (1D) vdW structures, i.e., they comprise columns of face-sharing TMX6 octahedral chains, whereas the chains are bound by weak vdW forces. Our calculations show that the single-chain and multiple-chain NWs constructed from these 1D vdW structures are stable. The calculated binding energies of the NWs are relatively small, suggesting that it is possible to exfoliate NWs from the 1D vdW materials. We further identify several 1D vdW transition metal quadrihalides (TMX4) that are candidates for exfoliation. This work opens a paradigm for exfoliating NWs from 1D vdW materials.

15.
Cancers (Basel) ; 15(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36900408

RESUMO

BACKGROUND: Sodium new houttuyfonate (SNH) has been reported to have anti-inflammatory, anti-fungal, and anti-cancer effects. However, few studies have investigated the effect of SNH on breast cancer. The aim of this study was to investigate whether SNH has therapeutic potential for targeting breast cancer. METHODS: Immunohistochemistry and Western blot analysis were used to examine the expression of proteins, flow cytometry was used to detect cell apoptosis and ROS levels, and transmission electron microscopy was used to observe mitochondria. RESULTS: Differentially expressed genes (DEGs) between breast cancer-related gene expression profiles (GSE139038 and GSE109169) from GEO DataSets were mainly involved in the immune signaling pathway and the apoptotic signaling pathway. According to in vitro experiments, SNH significantly inhibited the proliferation, migration, and invasiveness of MCF-7 (human cells) and CMT-1211 (canine cells) and promoted apoptosis. To explore the reason for the above cellular changes, it was found that SNH induced the excessive production of ROS, resulting in mitochondrial impairment, and then promoted apoptosis by inhibiting the activation of the PDK1-AKT-GSK3ß pathway. Tumor growth, as well as lung and liver metastases, were suppressed under SNH treatment in a mouse breast tumor model. CONCLUSIONS: SNH significantly inhibited the proliferation and invasiveness of breast cancer cells and may have significant therapeutic potential in breast cancer.

16.
Environ Sci Pollut Res Int ; 30(17): 50649-50660, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36800085

RESUMO

The effect of stormwater runoff on dissolved organic matter (DOM) in rivers is one of the central topics in water environment research. Jiujiang is one of the first cities established in the green development demonstration zone of the Yangtze River Economic Belt (Jiangxi Province, China). Three-dimensional excitation-emission matrix fluorescence with parallel factor analysis (3DEEM-PARAFAC) and ultraviolet-visible (UV-Vis) spectroscopy were used to explore the effects of runoff on organic matter in Shili River (Jiujiang, Jiangxi Province, China). The results show that the runoff led to an increase of some critical pollutants and DOM concentrations, especially in the middle reaches of the river. The concentration and relative molecular weight of DOM in water increased as a result of runoff. Three humic-like (C1-C3) and two protein-like (C4 and C5) components of DOM were identified using the PARAFAC model. The sources of the three humic-like components (C1, C2, C3) were consistent, unlike those of the protein-like component C4. Compared with the pre-rainfall period, the content of humus compounds flowing into the river through the early rainwater runoff was lower, which caused the relative content and proportion of humic substances little change and protein-like species increasing. The DOM mainly derived from autochthonous sources, and runoff had limited effect on its characteristics. Jiujiang is a key demonstration city for Yangtze River conservation. Rainwater runoff is one of the pollution sources of urban rivers, which leads to the deterioration of water quality and influences the distribution characteristics of DOM in water bodies. The PARAFAC components could adequately represent different indicators and sources of DOM in urban rivers, providing an important reference for urban river management.


Assuntos
Matéria Orgânica Dissolvida , Rios , Rios/química , Espectrometria de Fluorescência , Qualidade da Água , China , Substâncias Húmicas/análise , Análise Fatorial
17.
Sci Total Environ ; 863: 160855, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36535485

RESUMO

It is imperative to solve the problem of endogenous phosphorus (P) release from sediments in the governance of natural water bodies. Deciphering P migration and transformation patterns that are coupled to iron (Fe) and sulfur (S) cycling at the sediment-water interface (SWI) is the key to understanding the mechanisms underlying endogenous P release. In the present study, we deployed diffusive gradients in thin films (DGT) probes in situ at the SWI in Fuyang River, Hebei Province, China. When the probes were retrieved, the surrounding sediments were synchronously sampled. We analyzed the longitudinal spatiotemporal distribution of Fe, S, and P at the SWI. We also explored how functional bacterial community diversity was associated with the coupling reactions of Fe, S, and P as well as endogenous P release from sediments at the functional gene level. The results showed that labile Fe, S, and P occurred at low concentrations in sediments 0-2 cm below the SWI, while they were enriched in sediments at depths of 4-8 cm. The longitudinal distribution of different labile elements exhibited greater differences between October and February than regional differences, with higher concentrations at downstream locations than upstream locations. In February, Fe/Al-bound P and sulfide (S2-) concentrations increased in sediments compared with those in October owing to an increase in the relative abundances of dominant genera among P-mineralizing bacteria and sulfate-reducing bacteria. As a result, Fe in Fe-bound P precipitated as FeS2, which induced P remobilization and release into the overlying water. The spatiotemporal distribution patterns of functional genes related to P (phoD and ppk) and S (aprA) transformation were consistent with those of labile P and S, which strongly suggests that microorganisms played a role in driving and regulating the coupled cycling of P and S at the SWI.


Assuntos
Poluentes Químicos da Água , Água , Fósforo/análise , Ferro/análise , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Enxofre , China
18.
Toxics ; 10(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36287845

RESUMO

Selenium (Se) is an essential trace element for humans. Arbuscular mycorrhizal fungi (AMF) play a crucial role in increasing plant micronutrient acquisition. Soybean (Glycine max (Linn.) Merr.) is a staple food for most people around the world and a source of Se. Therefore, it is necessary to study the mechanism of Se intake in soybean under the influence of AMF. In this study, the effects of fertilization with selenite and inoculation with different AMF strains (Claroideoglomus etunicatum (Ce), Funneliformis mosseae (Fm)) on the accumulation and speciation of Se in common soybean plants were discussed. We carried out a pot experiment at the soil for 90 days to investigate the impact of fertilization with selenite and inoculation with Ce and Fm on the Se fractions in soil, soybean biomass, accumulation and speciation of Se in common soybean plants. The daily dietary intake of the Se (DDI) formula was used to estimate the risk threshold of human intake of Se from soybean seeds. The results showed that combined use of both AMF and Se fertilizer could boost total Se and organic Se amounts in soyabean seeds than that of single Se application and that it could increase the proportion of available Se in soil. Soybean inoculated with Fm and grown in soil fertilized with selenite had the highest organic Se. The results suggest that AMF inoculation could promote root growth, more soil water-soluble Se and higher Se uptake. The maximum Se intake of soybean for adults was 93.15 µg/d when treated with Se fertilizer and Fm, which satisfies the needs of Se intake recommended by the WHO. Combined use of AMF inoculation and Se fertilizer increases the bioavailable Se in soil and promotes the total Se concentration and organic Se accumulation in soybean. In conclusion, AMF inoculation combined with Se fertilization can be a promising strategy for Se biofortification in soybean.

19.
J Phys Chem A ; 126(35): 5924-5931, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36036969

RESUMO

Hybrid density functional (HDF) approximations usually deliver higher accuracy than local and semilocal approximations to the exchange-correlation functional, but this comes with drastically increased computational cost. Practical implementations of HDFs inevitably involve numerical approximations─even more so than their local and semilocal counterparts due to the additional numerical complexity arising from treating the exact-exchange component. This raises the question regarding the reproducibility of the HDF results yielded by different implementations. In this work, we benchmark the numerical precision of four independent implementations of the popular Heyd-Scuseria-Ernzerhof (HSE) range-separated HDF on describing key materials' properties, including both properties derived from equations of state (EOS) and band gaps of 20 crystalline solids. We find that the energy band gaps obtained by the four codes agree with each other rather satisfactorily. However, for lattice constants and bulk moduli, the deviations between the results computed by different codes are of the same order of magnitude as the deviations between the computational and experimental results. On the one hand, this means that the HSE functional is rather accurate for describing the cohesive properties of simple insulating solids. On the other hand, this also suggests that the numerical precision achieved with current major HSE implementations is not sufficiently high to unambiguously assess the physical accuracy of HDFs. It is found that the pseudopotential treatment of the core electrons is a major factor that contributes to this uncertainty.

20.
Nat Commun ; 13(1): 4595, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933558

RESUMO

Electron migration in molecules is the progenitor of chemical reactions and biological functions after light-matter interaction. Following this ultrafast dynamics, however, has been an enduring endeavor. Here we demonstrate that, by using machine learning algorithm to analyze high-order harmonics generated by two-color laser pulses, we are able to retrieve the complex amplitudes and phases of harmonics of single fixed-in-space molecules. These complex dipoles enable us to construct movies of laser-driven electron migration after tunnel ionization of N2 and CO2 molecules at time steps of 50 attoseconds. Moreover, the angular dependence of the migration dynamics is fully resolved. By examining the movies, we observe that electron holes do not just migrate along the laser polarization direction, but may swirl around the atom centers. Our result establishes a general scheme for studying ultrafast electron dynamics in molecules, paving a way for further advance in tracing and controlling photochemical reactions by femtosecond lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...