Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 850777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928270

RESUMO

Tyrosol (T), hydroxytyrosol (H), and salidroside (S) are typical phenylethanoids and also powerful dietary antioxidants. This study aimed at evaluating the influence of three natural phenylethanoids, which are dietary phenylethanoids of natural origins, on reversing gut dysbiosis and attenuating nonalcoholic fatty liver features of the liver induced by metabolic syndrome (MetS) mice. C57BL/6J female mice induced with high-fructose diet were established and administrated with salidroside, tyrosol, and hydroxytyrosol for 12 weeks, respectively. Biochemical analysis showed that S, T, and H significantly improved glucose metabolism and lipid metabolism, including reduced levels of total cholesterol insulin (INS), uric acid, low-density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (ALT). Histopathological observation of the liver confirmed the protective effects of S, T, and H against hepatic steatosis, which were demonstrated by the results of metabolomic analysis, such as the improvement in glycolysis, purine metabolism, bile acid, fatty acid metabolism, and choline metabolism. Additionally, 16S rRNA gene sequence data revealed that S, T, and H could enhance the diversity of gut microbiota. These findings suggested that S, T, and H probably suppress lipid accumulation and have hepatoprotective effects and improve intestinal microflora disorders to attenuate metabolic syndromes.

2.
Front Pharmacol ; 12: 671708, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326769

RESUMO

Metabolic syndrome (MetS) is a pathological state of many abnormal metabolic sections. These abnormalities are closely related to diabetes, heart pathologies and other vascular diseases. Danggui-Shaoyao-San (DSS) is a traditional Chinese medicine formula that has been used as a therapy for Alzheimer's disease. DSS has rarely been reported in the application of MetS and its mechanism of how it improves gut microbia dysbiosis and hepatic lipid homeostasis. In this study, three extracts of DSS were obtained using water, 50% methanol in water and methanol as extracting solvents. Their chemical substances were analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass (UPLC-Q/TOF-MS). Pharmacodynamic effect of the extracts were evaluated by comparison of biochemical factors, 16S rRNA sequencing test for gut microbiota analysis, as well as metabonomic and transcriptomic assessments on liver tissues from fructose-fed rats. This study aimed at investigating DSS's mechanism of regulating blood lipid, anti-inflammation and reducing blood glucose. The results showed that the 50% methanol extract (HME) was more effective. It was worth noting that hydroxysteroid 17ß-dehydrogenase 13 (HSD17ß13) as a critical element of increasing blood lipid biomarker-triglyceride (TG), was decreased markedly by DSS. The influence from upgraded hydroxysteroid 17ß-dehydrogenase 7 (HSD17ß7) may be stronger than that from downgraded Lactobacillus in the aspect of regulating back blood lipid biomarker-total cholesterol (TC). The differential down-regulation of tumornecrosis factor alpha (TNF-α) and the significant up-regulation of Akkermansia showed the effective effect of anti-inflammation by DSS. The declining glycine and alanine induced the lowering glucose and lactate. It demonstrated that DSS slowed down the reaction of gluconeogenesis to reduce the blood glucose. The results demonstrated that DSS improved pathological symptoms of MetS and some special biochemical factors in three aspects by better regulating intestinal floras and improving hepatic gene expressions and metabolites.

3.
Molecules ; 26(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801417

RESUMO

Trimethylamine N-oxide (TMAO), as a gut-derived metabolite, has been found to be associated with enhanced risk for atherosclerosis and cardiovascular disease. We presented a method for targeted profiling of TMAO and betaine in serum and food samples based on a combination of one-step sample pretreatment and proton nuclear magnetic resonance spectroscopy. The key step included a processing of sample preparation using a selective solid-phase extraction column for retention of basic metabolites. Proton signals at δ 3.29 and δ 3.28 were employed to quantify TMAO and betaine, respectively. The developed method was examined with acceptable linear relationship, precision, stability, repeatability, and accuracy. It was successfully applied to detect serum levels of TMAO and betaine in TMAO-fed mice and high-fructose-fed rats and also used to determine the contents of TMAO and betaine in several kinds of food, such as fish, pork, milk, and egg yolk.


Assuntos
Betaína/análise , Análise de Alimentos/métodos , Metabolômica/métodos , Metilaminas/análise , Óxidos/química , Animais , Betaína/sangue , Betaína/metabolismo , Feminino , Masculino , Metilaminas/sangue , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
4.
Front Chem ; 8: 363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426329

RESUMO

Plants from Alisma species belong to the genus of Alisma Linn. in Alismataceae family. The tubers of A. orientale (Sam.) Juzep, also known as Ze Xie in Chinese and Takusha in Japanese, have been used in traditional medicine for a long history. Triterpenoids are the main secondary metabolites isolated from Alisma species, and reported with various bioactive properties, including anticancer, lipid-regulating, anti-inflammatory, antibacterial, antiviral and diuretic activities. In this brief review, we aimed to summarize the phytochemical and pharmacological characteristics of triterpenoids found in Alisma, and discuss their structure modification to enhance cytotoxicity as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...