Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Syndr Relat Disord ; 22(5): 385-393, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452163

RESUMO

Background: Altering the dietary patterns can potentially decrease the likelihood of metabolic syndrome and circadian syndrome (CircS), but it remains unclear which types of flavonoid compounds are responsible for these effects, particularly among nationally representative populations. Thus, we conducted a cross-sectional study to investigate the impact of flavonoid intake on CircS. Methods: The study included 9212 noninstitutionalized adults from two survey cycles (2007-2008 and 2009-2010) of the National Health and Nutrition Examination Survey (NHANES). Data on six dietary flavonoids were collected through a 24-hr dietary recall, including isoflavones, anthocyanidins, flavan-3-ols, flavanones, flavones, and flavonols. All statistical analyses were weighted to account for the complex survey sampling design to generate nationally representative estimates. Multivariable logistic regression and propensity score matching (PSM) were performed to control for potential confounders and assess the association between the six flavonoids and risk of short sleep. Results: After adjusting for all covariates, only individuals with high intake of total flavanones exhibited a 28% [odds ratio (OR) = 0.72, 95% confidence interval (CI) = 0.64-0.83, P < 0.001] decrease in the risk of CircS. The results obtained through PSM were consistent with this finding (OR = 0.70, 95% CI = 0.61-0.80, P < 0.001). Total flavanone intake displayed a linear dose-response relationship with the likelihood of CircS (P for interaction = 0.448). Conclusions: Our findings suggest that high dietary intakes of flavanones have beneficial effects on reducing the risk of CircS.


Assuntos
Dieta , Flavonoides , Inquéritos Nutricionais , Humanos , Estudos Transversais , Flavonoides/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/prevenção & controle , Ritmo Circadiano , Idoso , Fatores de Risco , Estados Unidos/epidemiologia
2.
3.
Micromachines (Basel) ; 14(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37241559

RESUMO

During practical usage, thermal flowmeters have a limited range of applications. The present work investigates the factors influencing thermal flowmeter measurements and observes the effects of buoyancy convection and forced convection on the flow rate measurement sensitivity. The results show that the gravity level, inclination angle, channel height, mass flow rate, and heating power affect the flow rate measurements by influencing the flow pattern and the temperature distribution. Gravity determines the generation of convective cells, while the inclination angle affects the location of the convective cells. Channel height affects the flow pattern and temperature distribution. Higher sensitivity can be achieved with smaller mass flow rates or higher heating power. According to the combined influence of the aforementioned parameters, the present work investigates the flow transition based on the Reynolds number and the Grashof number. When the Reynolds number is below the critical value corresponding to the Grashof number, convective cells emerge and affect the accuracy of flowmeter measurements. The research on influencing factors and flow transition presented in this paper has potential implications for the design and manufacture of thermal flowmeters under different working conditions.

4.
Micromachines (Basel) ; 14(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37241588

RESUMO

This work experimentally investigated the effects of different factors, including nanoparticle size and type, volume fraction, and base fluid, on the thermal conductivity enhancement of nanofluids. The experimental results indicate that the thermal conductivity enhancement of nanofluids is proportional to the thermal conductivity of the nanoparticles, with the enhancement being more pronounced for fluids with lower thermal conductivity. Meanwhile, the thermal conductivity of nanofluids decreases with increasing particle size and increases with increasing volume fraction. In addition, elongated particles are superior to spherical ones for thermal conductivity enhancement. This paper also proposes a thermal conductivity model by introducing the effect of nanoparticle size based on the previous classical thermal conductivity model via the method of dimensional analysis. This model analyzes the magnitude of influencing factors on the thermal conductivity of nanofluid and proposes suggestions for an improvement in thermal conductivity enhancement.

5.
J Transl Med ; 19(1): 258, 2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118928

RESUMO

BACKGROUND: Asthma is a frequently occurring respiratory disease with an increasing incidence around the world. Airway inflammation and remodeling are important contributors to the occurrence of asthma. We conducted this study aiming at exploring the effect of Histone deacetylase 4 (HDAC4)-mediated Kruppel-like factor 5 (KLF5)/Slug/CXC chemokine ligand-12 (CXCL12) axis on the development of asthma in regulation of airway inflammation and remodeling. METHODS: An asthmatic rat model was induced by ovalbumin (OVA) irrigation, and determined HDAC4, KLF5, Slug, and CXCL12 expression in the lung tissues by RT-qPCR and Western blot assay. OVA was also used to induce a cell model of asthma in human BEAS-2B and HBE135-E6E7bronchial epithelial cells. The airway hyperresponsiveness (AHR), and expression of inflammatory cytokines in model mice were examined using methacholine challenge test and ELISA. The biological behaviors were measured in asthma model bronchial smooth muscle cells (BSMCs) following loss- and gain- function approaches. The interactions between HDAC4, KLF5, Slug, and CXCL12 were also detected by IP assay, dual luciferase gene reporter assay, and ChIP. RESULTS: HDAC4 was upregulated in lung tissues of OVA-induced asthmatic mice, and inhibition of HDAC4 alleviated the airway inflammation and remodeling. HDAC4 increased KLF5 transcriptional activity through deacetylation; deacetylated KLF5 bound to the promoter of Slug and transcriptionally upregulated Slug expression, which in turn increased the expression of CXCL12 to promote the inflammation in bronchial epithelial cells and thus induce the proliferation and migration of BSMCs. CONCLUSION: Collectively, HDAC4 deacetylates KLF5 to upregulate Slug and CXCL12, thereby causing airway remodeling and facilitating progression of asthma.


Assuntos
Asma , Remodelação das Vias Aéreas , Animais , Asma/genética , Quimiocinas CXC , Modelos Animais de Doenças , Histona Desacetilases , Fatores de Transcrição Kruppel-Like/genética , Ligantes , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Ratos , Proteínas Repressoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...