Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7270, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949923

RESUMO

The primary motor (M1) and somatosensory (S1) cortices play critical roles in motor control but the signaling between these structures is poorly understood. To fill this gap, we recorded - in three participants in an ongoing human clinical trial (NCT01894802) for people with paralyzed hands - the responses evoked in the hand and arm representations of M1 during intracortical microstimulation (ICMS) in the hand representation of S1. We found that ICMS of S1 activated some M1 neurons at short, fixed latencies consistent with monosynaptic activation. Additionally, most of the ICMS-evoked responses in M1 were more variable in time, suggesting indirect effects of stimulation. The spatial pattern of M1 activation varied systematically: S1 electrodes that elicited percepts in a finger preferentially activated M1 neurons excited during that finger's movement. Moreover, the indirect effects of S1 ICMS on M1 were context dependent, such that the magnitude and even sign relative to baseline varied across tasks. We tested the implications of these effects for brain-control of a virtual hand, in which ICMS conveyed tactile feedback. While ICMS-evoked activation of M1 disrupted decoder performance, this disruption was minimized using biomimetic stimulation, which emphasizes contact transients at the onset and offset of grasp, and reduces sustained stimulation.


Assuntos
Córtex Motor , Córtex Somatossensorial , Humanos , Córtex Somatossensorial/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Movimento/fisiologia , Mãos , Estimulação Elétrica
2.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37425877

RESUMO

When we interact with objects, we rely on signals from the hand that convey information about the object and our interaction with it. A basic feature of these interactions, the locations of contacts between the hand and object, is often only available via the sense of touch. Information about locations of contact between a brain-controlled bionic hand and an object can be signaled via intracortical microstimulation (ICMS) of somatosensory cortex (S1), which evokes touch sensations that are localized to a specific patch of skin. To provide intuitive location information, tactile sensors on the robotic hand drive ICMS through electrodes that evoke sensations at skin locations matching sensor locations. This approach requires that ICMS-evoked sensations be focal, stable, and distributed over the hand. To systematically investigate the localization of ICMS-evoked sensations, we analyzed the projected fields (PFs) of ICMS-evoked sensations - their location and spatial extent - from reports obtained over multiple years from three participants implanted with microelectrode arrays in S1. First, we found that PFs vary widely in their size across electrodes, are highly stable within electrode, are distributed over large swaths of each participant's hand, and increase in size as the amplitude or frequency of ICMS increases. Second, while PF locations match the locations of the receptive fields (RFs) of the neurons near the stimulating electrode, PFs tend to be subsumed by the corresponding RFs. Third, multi-channel stimulation gives rise to a PF that reflects the conjunction of the PFs of the component channels. By stimulating through electrodes with largely overlapping PFs, then, we can evoke a sensation that is experienced primarily at the intersection of the component PFs. To assess the functional consequence of this phenomenon, we implemented multichannel ICMS-based feedback in a bionic hand and demonstrated that the resulting sensations are more localizable than are those evoked via single-channel ICMS.

3.
J Neurosci ; 42(10): 2052-2064, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35074865

RESUMO

Electrical stimulation of the peripheral nerves of human participants provides a unique opportunity to study the neural determinants of perceptual quality using a causal manipulation. A major challenge in the study of neural coding of touch has been to isolate the role of spike timing-at the scale of milliseconds or tens of milliseconds-in shaping the sensory experience. In the present study, we address this question by systematically varying the pulse frequency (PF) of electrical stimulation pulse trains delivered to the peripheral nerves of seven participants with upper and lower extremity limb loss via chronically implanted neural interfaces. We find that increases in PF lead to systematic increases in perceived frequency, up to ∼50 Hz, at which point further changes in PF have little to no impact on sensory quality. Above this transition frequency, ratings of perceived frequency level off, the ability to discriminate changes in PF is abolished, and verbal descriptors selected to characterize the sensation change abruptly. We conclude that sensation quality is shaped by temporal patterns of neural activation, even if these patterns are imposed on a fixed neural population, but this temporal patterning can only be resolved up to ∼50 Hz. These findings highlight the importance of spike timing in shaping the quality of a sensation and will contribute to the development of encoding strategies for conveying touch feedback through bionic hands and feet.SIGNIFICANCE STATEMENT A major challenge in the study of neural coding of touch has been to understand how temporal patterns in neuronal responses shape the sensory experience. We address this question by varying the pulse frequency (PF) of electrical pulse trains delivered through implanted nerve interfaces in seven amputees. We concomitantly vary pulse width to separate the effect of changing PF on sensory quality from its effect on perceived magnitude. We find that increases in PF lead to increases in perceived frequency, a qualitative dimension, up to ∼50 Hz, beyond which changes in PF have little impact on quality. We conclude that temporal patterning in the neuronal response can shape quality and discuss the implications for restoring touch via neural interfaces.


Assuntos
Amputados , Percepção do Tato , Estimulação Elétrica/métodos , Mãos , Humanos , Tato/fisiologia , Percepção do Tato/fisiologia
4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34853173

RESUMO

Tactile nerve fibers fall into a few classes that can be readily distinguished based on their spatiotemporal response properties. Because nerve fibers reflect local skin deformations, they individually carry ambiguous signals about object features. In contrast, cortical neurons exhibit heterogeneous response properties that reflect computations applied to convergent input from multiple classes of afferents, which confer to them a selectivity for behaviorally relevant features of objects. The conventional view is that these complex response properties arise within the cortex itself, implying that sensory signals are not processed to any significant extent in the two intervening structures-the cuneate nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in the CN to a battery of stimuli that have been extensively used to characterize tactile coding in both the periphery and cortex, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their cortical counterparts than they are to their inputs: CN neurons receive input from multiple classes of nerve fibers, they have spatially complex receptive fields, and they exhibit selectivity for object features. Contrary to consensus, then, the CN plays a key role in processing tactile information.


Assuntos
Bulbo/fisiologia , Percepção/fisiologia , Percepção do Tato/fisiologia , Potenciais de Ação/fisiologia , Animais , Feminino , Macaca/fisiologia , Masculino , Mecanorreceptores/fisiologia , Bulbo/metabolismo , Fibras Nervosas/fisiologia , Neurônios/fisiologia , Pele/inervação , Tato/fisiologia , Vibração
5.
J Neural Eng ; 15(6): 066033, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30245482

RESUMO

OBJECTIVE: Hand function can be restored in upper-limb amputees by equipping them with anthropomorphic prostheses controlled with signals from residual muscles. The dexterity of these bionic hands is severely limited in large part by the absence of tactile feedback about interactions with objects. We propose that, to the extent that artificial touch mimics its natural counterpart, these sensory signals will be more easily integrated into the motor plan for object manipulation. APPROACH: We describe an approach to convey tactile feedback through electrical stimulation of the residual somatosensory nerves that mimics the aggregate activity of tactile fibers that would be produced in the nerve of a native hand during object interactions. Specifically, we build a parsimonious model that maps the stimulus-described as time-varying indentation depth, indentation rate, and acceleration-into continuous estimates of the time-varying population firing rate and of the size of the recruited afferent population. MAIN RESULTS: The simple model can reconstruct aggregate afferent responses to a wide range of stimuli, including those experienced during activities of daily living. SIGNIFICANCE: We discuss how the proposed model can be implemented with a peripheral nerve interface and anticipate it will lead to improved dexterity for prosthetic hands.


Assuntos
Biomimética , Biônica , Mãos/fisiologia , Próteses Neurais , Próteses e Implantes , Tato/fisiologia , Atividades Cotidianas , Algoritmos , Estimulação Elétrica , Retroalimentação Sensorial , Mãos/inervação , Humanos , Modelos Neurológicos , Fibras Nervosas/fisiologia , Desenho de Prótese , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...