Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(10): 4102-4111, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712852

RESUMO

The perception of bitter and sweet tastes is a crucial aspect of human sensory experience. Concerns over the long-term use of aspartame, a widely used sweetener suspected of carcinogenic risks, highlight the importance of developing new taste modifiers. This study utilizes Large Language Models (LLMs) such as GPT-3.5 and GPT-4 for predicting molecular taste characteristics, with a focus on the bitter-sweet dichotomy. Employing random and scaffold data splitting strategies, GPT-4 demonstrated superior performance, achieving an impressive 86% accuracy under scaffold partitioning. Additionally, ChatGPT was employed to extract specific molecular features associated with bitter and sweet tastes. Utilizing these insights, novel molecular compounds with distinct taste profiles were successfully generated. These compounds were validated for their bitter and sweet properties through molecular docking and molecular dynamics simulation, and their practicality was further confirmed by ADMET toxicity testing and DeepSA synthesis feasibility. This research highlights the potential of LLMs in predicting molecular properties and their implications in health and chemical science.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Paladar , Humanos , Edulcorantes/química , Edulcorantes/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612872

RESUMO

Recently, studies have reported a correlation that individuals with diabetes show an increased risk of developing Alzheimer's disease (AD). Mulberry leaves, serving as both a traditional medicinal herb and a food source, exhibit significant hypoglycemic and antioxidative properties. The flavonoid compounds in mulberry leaf offer therapeutic effects for relieving diabetic symptoms and providing neuroprotection. However, the mechanisms of this effect have not been fully elucidated. This investigation aimed to investigate the combined effects of specific mulberry leaf flavonoids (kaempferol, quercetin, rhamnocitrin, tetramethoxyluteolin, and norartocarpetin) on both type 2 diabetes mellitus (T2DM) and AD. Additionally, the role of the gut microbiota in these two diseases' treatment was studied. Using network pharmacology, we investigated the potential mechanisms of flavonoids in mulberry leaves, combined with gut microbiota, in combating AD and T2DM. In addition, we identified protein tyrosine phosphatase 1B (PTP1B) as a key target for kaempferol in these two diseases. Molecular docking and molecular dynamics simulations showed that kaempferol has the potential to inhibit PTP1B for indirect treatment of AD, which was proven by measuring the IC50 of kaempferol (279.23 µM). The cell experiment also confirmed the dose-dependent effect of kaempferol on the phosphorylation of total cellular protein in HepG2 cells. This research supports the concept of food-medicine homology and broadens the range of medical treatments for diabetes and AD, highlighting the prospect of integrating traditional herbal remedies with modern medical research.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Morus , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Quempferóis , Simulação de Dinâmica Molecular , Farmacologia em Rede , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular , Frutas , Flavonoides
3.
Comput Biol Med ; 172: 108252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493604

RESUMO

Gout, a painful condition marked by elevated uric acid levels often linked to the diet's high purine and alcohol content, finds a potential treatment target in xanthine oxidase (XO), a crucial enzyme for uric acid production. This study explores the therapeutic properties of alkaloids extracted from sunflower (Helianthus annuus L.) receptacles against gout. By leveraging computational chemistry and introducing a novel R-based clustering algorithm, "TriDimensional Hierarchical Fingerprint Clustering with Tanimoto Representative Selection (3DHFC-TRS)," we assessed 231 alkaloid molecules from sunflower receptacles. Our clustering analysis pinpointed six alkaloids with significant gout-targeting potential, particularly emphasizing the fifth cluster's XO inhibition capabilities. Through molecular docking and the BatchDTA prediction model, we identified three top compounds-2-naphthylalanine, medroxalol, and fenspiride-with the highest XO affinity. Further molecular dynamics simulations assessed their enzyme active site interactions and binding free energies, employing MM-PBSA calculations. This investigation not only highlights the discovery of promising compounds within sunflower receptacle alkaloids via LC-MS but also introduces medroxalol as a novel gout treatment candidate, showcasing the synergy of computational techniques and LC-MS in drug discovery.


Assuntos
Etanolaminas , Gota , Helianthus , Helianthus/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/uso terapêutico , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Gota/tratamento farmacológico , Xantina Oxidase/química , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...