Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 290(22): 14192-207, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25770214

RESUMO

Spider venom is a complex mixture of bioactive peptides to subdue their prey. Early estimates suggested that over 400 venom peptides are produced per species. In order to investigate the mechanisms responsible for this impressive diversity, transcriptomics based on second generation high throughput sequencing was combined with peptidomic assays to characterize the venom of the tarantula Haplopelma hainanum. The genes expressed in the venom glands were identified, and the bioactivity of their protein products was analyzed using the patch clamp technique. A total of 1,136 potential toxin precursors were identified that clustered into 90 toxin groups, of which 72 were novel. The toxin peptides clustered into 20 cysteine scaffolds that included between 4 and 12 cysteines, and 14 of these groups were newly identified in this spider. Highly abundant toxin peptide transcripts were present and resulted from hypermutation and/or fragment insertion/deletion. In combination with variable post-translational modifications, this genetic variability explained how a limited set of genes can generate hundreds of toxin peptides in venom glands. Furthermore, the intraspecies venom variability illustrated the dynamic nature of spider venom and revealed how complex components work together to generate diverse bioactivities that facilitate adaptation to changing environments, types of prey, and milking regimes in captivity.


Assuntos
Proteômica/métodos , Venenos de Aranha/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Cisteína/química , DNA Complementar/metabolismo , Etiquetas de Sequências Expressas , Deleção de Genes , Dados de Sequência Molecular , Mutação , Neurônios/metabolismo , Neurotoxinas/química , Técnicas de Patch-Clamp , Peptídeos/química , Filogenia , Processamento de Proteína Pós-Traducional , Ratos , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Aranhas , Transcrição Gênica
3.
Nucleic Acids Res ; 36(Database issue): D293-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17933766

RESUMO

Venomous animals possess an arsenal of toxins for predation and defense. These toxins have great diversity in function and structure as well as evolution and therefore are of value in both basic and applied research. Recently, toxinomics researches using cDNA library sequencing and proteomics profiling have revealed a large number of new toxins. Although several previous groups have attempted to manage these data, most of them are restricted to certain taxonomic groups and/or lack effective systems for data query and access. In addition, the description of the function and the classification of toxins is rather inconsistent resulting in a barrier against exchanging and comparing the data. Here, we report the ATDB database and website which contains more than 3235 animal toxins from UniProtKB/Swiss-Prot and TrEMBL and related toxin databases as well as published literature. A new ontology (Toxin Ontology) was constructed to standardize the toxin annotations, which includes 745 distinct terms within four term spaces. Furthermore, more than 8423 TO terms have been manually assigned to 2132 toxins by trained biologists. Queries to the database can be conducted via a user-friendly web interface at http://protchem.hunnu.edu.cn/toxin.


Assuntos
Bases de Dados de Proteínas , Toxinas Biológicas/química , Animais , Internet , Peptídeos/química , Sinais Direcionadores de Proteínas , Proteínas/química , Proteínas/genética , Toxinas Biológicas/genética , Interface Usuário-Computador , Vocabulário Controlado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...