Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 9: 989, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214411

RESUMO

Koumine, an indole alkaloid, is a major bioactive component of Gelsemium elegans. Previous studies have demonstrated that koumine has noticeable anti-inflammatory and analgesic effects in inflammatory and neuropathic pain (NP) models, but the mechanisms involved are not well understood. This study was designed to explore the analgesic effect of koumine on chronic constriction injury (CCI)-induced NP in rats and the underlying mechanisms, including astrocyte autophagy and apoptosis in the spinal cord. Rats with CCI-induced NP were used to evaluate the analgesic and anti-inflammatory effects of koumine. Lipopolysaccharide (LPS)-induced inflammation in rat primary astrocytes was also used to evaluate the anti-inflammatory effect of koumine. We found that repeated treatment with koumine significantly reduced and inhibited CCI-evoked astrocyte activation as well as the levels of pro-inflammatory cytokines. Meanwhile, we found that koumine promoted autophagy in the spinal cord of CCI rats, as reflected by decreases in the LC3-II/I ratio and P62 expression. Double immunofluorescence staining showed a high level of colocalization between LC3 and GFAP-positive glia cells, which could be decreased by koumine. Intrathecal injection of an autophagy inhibitor (chloroquine) reversed the analgesic effect of koumine, as well as the inhibitory effect of koumine on astrocyte activation in the spinal cord. In addition, TUNEL staining suggested that CCI-induced apoptosis was inhibited by koumine, and this inhibition could be abolished by chloroquine. Western blot analysis revealed that koumine significantly increased the level of Bcl-xl while inhibiting Bax expression and decreasing cleaved caspase-3. In addition, we found that koumine could decrease astrocyte-mediated neuroinflammation and enhance autophagy in primary cultured astrocytes. These results suggest that the analgesic effects of koumine on CCI-induced NP may involve inhibition of astrocyte activation and pro-inflammatory cytokine release, which may relate to the promotion of astrocyte autophagy and the inhibition for apoptosis in the spinal cord.

2.
Neural Plast ; 2018: 9347696, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29770147

RESUMO

Despite decades of studies, the currently available drugs largely fail to control neuropathic pain. Koumine-an alkaloidal constituent derived from the medicinal plant Gelsemium elegans Benth.-has been shown to possess analgesic and anti-inflammatory properties; however, the underlying mechanisms remain unclear. In this study, we aimed to investigate the analgesic and anti-inflammatory effects and the possible underlying mechanisms of koumine. The analgesic and anti-inflammatory effects of koumine were explored by using chronic constriction injury of the sciatic nerve (CCI) neuropathic pain model in vivo and LPS-induced injury in microglia BV2 cells in vitro. Immunofluorescence staining and Western blot analysis were used to assess the modulator effect of koumine on microglia and astrocyte activation after CCI surgery. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the levels of proinflammatory cytokines. Western blot analysis and quantitative real-time polymerase chain reaction (qPCR) were used to examine the modulator effect of koumine on microglial M1 polarization. We found that single or repeated treatment of koumine can significantly reduce neuropathic pain after nerve injury. Moreover, koumine showed inhibitory effects on CCI-evoked microglia and astrocyte activation and reduced proinflammatory cytokine production in the spinal cord in rat CCI models. In BV2 cells, koumine significantly inhibited microglia M1 polarization. Furthermore, the analgesic effect of koumine was inhibited by a TSPO antagonist PK11195. These findings suggest that the analgesic effects of koumine on CCI-induced neuropathic pain may result from the inhibition of microglia activation and M1 polarization as well as the activation of astrocytes while sparing the anti-inflammatory responses to neuropathic pain.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Astrócitos/efeitos dos fármacos , Alcaloides Indólicos/administração & dosagem , Inflamação/prevenção & controle , Microglia/efeitos dos fármacos , Neuralgia/complicações , Animais , Astrócitos/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Inflamação/complicações , Inflamação/metabolismo , Masculino , Microglia/metabolismo , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Nervo Isquiático/lesões , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...