Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 15996-16005, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617669

RESUMO

Although cigar tobacco leaves (CTLs) have a high economic value, research regarding the flavor characteristics of CTLs is currently limited. A comprehensive study of the flavor characteristics of CTLs from different regions of China was conducted by identifying their volatile-flavor-containing compounds (VFCs) and flavors. The samples were analyzed via gas chromatography-ion mobility spectrometry (GC-IMS) and sensory evaluation. Results revealed considerable differences in the VFC contents of CTLs from different regions of China, suggesting that the VFLs of CTLs could be influenced by geographical origin. Mainly, phenols, pyrazines, and aldehydes were present in the CTLs from Sichuan. High contents of esters and pyrazines were present in the CTLs from Hubei, while esters were the major components of the CTLs from Hainan. Multivariate analysis results showed the effective differentiation of samples from different geographical origins based on the GC-IMS results. Sensory evaluation revealed that the flavors of CTLs from different geographical origins were different. 1,8-Pinene, 3-methyl-3-butene-1-ol, 2,3-dimethyl-5-ethylpyrazine, 4-methyl-3-penten-2-one, and (E)-2-pentenal might serve as geographical marker compounds, indicating the geographical origin of CTLs based on the results of GC-IMS and sensory evaluation. This study may be beneficial for the trade of CTLs and the development of cigar products.

2.
Angew Chem Int Ed Engl ; 62(16): e202218027, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36808860

RESUMO

Adsorptive separation is an energy-efficient alternative, but its advancement has been hindered by the challenge of industrially potential adsorbents development. Herein, a novel ultra-microporous metal-organic framework ZU-901 is designed that satisfies the basic criteria raised by ethylene/ethane (C2 H4 /C2 H6 ) pressure swing adsorption (PSA). ZU-901 exhibits an "S" shaped C2 H4 curve with high sorbent selection parameter (65) and could be mildly regenerated. Through green aqueous-phase synthesis, ZU-901 is easily scalable with 99 % yield, and it is stable in water, acid, basic solutions and cycling breakthrough experiments. Polymer-grade C2 H4 (99.51 %) could be obtained via a simulating two-bed PSA process, and the corresponding energy consumption is only 1/10 of that of simulating cryogenic distillation. Our work has demonstrated the great potential of pore engineering in designing porous materials with desired adsorption and desorption behavior to implement an efficient PSA process.

3.
Chem Sci ; 14(5): 1205-1217, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36756340

RESUMO

Branching phenomena are ubiquitous in both natural and artificial crystallization processes. The branched nanostructures' emergent properties depend upon their structures, but their structural tunability is limited by an inadequate understanding of their formation mechanisms. Here we developed an ensemble of Nickel-Based nano-Composites (NBCs) to investigate branching phenomena in solution-phase synthesis with precision and in depth. NBCs of 24 morphologies, including dots, core@shell dots, hollow shells, clusters, polyhedra, platelets, dendrites, urchins, and dandelions, were synthesized through systematic adjustment of multiple synthesis parameters. Relationships between the synthesis parameters and the resultant morphologies were analyzed. Classical or non-classical models of nucleation, nascent growth, 1D growth, 2D growth, 3D reconstruction, aggregation, and carburization were defined individually and then integrated to provide a holistic view of the formation mechanism of branched NBCs. Finally, guidelines were extracted and verified to guide the rational solution-phase syntheses of branched nanomaterials with emergent biological, chemical, and physical properties for potential applications in immunology, catalysis, energy storage, and optics. Demonstrating a systematic approach for deconvoluting the formation mechanism and enhancing the synthesis tunability, this work is intended to benefit the conception, development, and improvement of analogous artificial branched nanostructures. Moreover, the progress on this front of synthesis science would, hopefully, deepen our understanding of branching phenomena in nature.

4.
Int J Biol Macromol ; 221: 1512-1526, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35998852

RESUMO

Polylactide (PLA) is one of the most attractive bioplastics as it can be produced from nontoxic renewable feedstock. However, its inherently poor toughness greatly limits its large-scale application. Cost-effectively toughening PLA without sacrificing its transparency remains a big challenge. We herein prepared an imidazolium-based poly(ionic liquid)-b-PLA copolymer (ILA) and ionomers as toughening agent for PLA through an integrative approach including continuous-monomer-feeding copolymerization, quaternization reaction, ion exchange and inter-ionomers blending. By blending PLA with the ILA and ionomers, we successfully obtained PLA materials with combined features including high toughness, good transparency and antibacterial properties. The effects of regulated ionomer composition and ILA compatibilizer on phase morphology, mechanical properties and transparency of the blends were systematically studied. The optimum formulation (PLA/E12/ILA 60/40/5) shows an impressive transmittance of 89-93 %, high impact strength of 45 kJ/m2 and elongation at break at 170 %, which are about 17 and 24 times that of pure PLA, respectively. More interestingly, the presence of imidazolium cation and anion groups endows the blends with attractive antibacterial properties. Ion exchange between ILA copolymer and the imidazolium-containing ionomeric system leads to a synergistic effect of compatibilization and efficient toughening, providing a new strategy for develop high performance PLA materials.


Assuntos
Líquidos Iônicos , Materiais Biocompatíveis , Poliésteres , Antibacterianos/farmacologia
5.
ACS Omega ; 7(14): 12004-12014, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449939

RESUMO

Manganese-based catalysts have shown great potential for use as a hydrocarbon reductant for NO x reduction (HC-SCR) at low temperatures if their catalytic stability could be further maintained. The effect of CeO2 as a promoter and catalyst stability agent for activated carbon supported MnO x was investigated during low temperature deNO x based on a C2H4 reductant. The modern characterization technology could provide a clear understanding of the activity observed during the deNO x tests. When reaction temperatures were greater than 180 °C and with ceria concentrations more than 5%, the overall NO conversion became stable near 70% during long duration testing. In situ DRIFTS shows that C2H4 is adsorbed on the Mn3Ce3/NAC catalysts to generate hydrocarbon activated intermediates, R-COOH, and the reaction mechanism followed the E-R mechanism. The stability and the analytical data pointed to the formation of stable oxygen vacancies within Ce3+/Ce4+ redox couplets that prevented the reduction of MnO2 to crystalline Mn2O3 and promoted the chemisorption of oxygen on the surface of MnO x -CeO x structures. Based on the data, a synergetic mechanism model of the deNO x activity is proposed for the MnO x -CeO x catalysts.

6.
RSC Adv ; 10(12): 6850-6857, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35493912

RESUMO

A novel raspberry-like γ-Fe2O3@carbon dot (CD) nanocatalyst was prepared and applied for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The nanocatalyst was found to be an efficient photocatalyst in visible light-regulated PET-RAFT polymerization owing to the oxidative quenching mechanism between the photoexcited γ-Fe2O3@CDs and the RAFT agent in the PET process. Notably, polymerization can be reversibly ceased in the absence of light or under an external magnetic field. The superparamagnetic nature and high saturation magnetization value (∼30.4 emu g-1) of the nanocatalyst contribute to convenient recycling of the nanocatalyst after polymerization. The PET-RAFT polymerization with the nanocatalyst before and after recycling was investigated, which displayed all the characteristics of controlled/living polymerization systems.

7.
Anal Chem ; 91(4): 2916-2922, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30657674

RESUMO

The disposition and metabolism of nicotine in the brain is an important determinant of its exposure. We have developed a novel method for the dynamic determination of nicotine and its metabolites in rat brain and blood by simultaneous microdialysis sampling, stable-isotope labeling, and ultra high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) assaying. Microdialysis probes were inserted into both the right striatum and jugular vein of Sprague-Dawley rats. The collections of dialystes after nicotine intraperitoneal injection were analyzed by the optimized UHPLC-HRMS. Nicotine-pyridyl- d4 was used as a metabolic tracer, and several stably labeled isotopes were applied to calibrate the in vivo recoveries of retrodialysis. The quadrupole-Orbitrap HRMS provided reliable characterization of the nicotine derivatives with less than 3.5 ppm mass measurement accuracy. Good precision and accuracy were obtained for different analytes within the predefined limits of acceptability and the range of the standard curve. Nicotine and its 11 metabolites were identified in most microdialysis samples from the blood and brain tissue samples. Besides cotinine as the main metabolic product of nicotine, trans-3'-hydroxy-cotinine, nicotine- N-oxide, and norcotinine were proven to be the second most abundant metabolites. The other seven nicotine products, including 4-oxo-4-(3-pyridyl)-butanoic acid, 4-hydroxy-4-(3-pyridyl)-butanoic acid, cotinine- N-oxide, nicotine- N-glucuronide, cotinine- N-glucuronide, and trans-3'- hydroxy-cotinine- O-glucuronide, which have not been determined previously in animal brain, were present in minor amounts. The pharmacokinetic profile of nicotine metabolites indicated that the metabolic characteristic of nicotine in the brain was relatively different from that in the blood. The present work would provide comprehensive evidence for clarifying the differences between nicotine metabolism in the brain and peripheral system.


Assuntos
Nicotina/farmacocinética , Agonistas Nicotínicos/farmacocinética , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Microdiálise/métodos , Nicotina/sangue , Nicotina/metabolismo , Agonistas Nicotínicos/sangue , Agonistas Nicotínicos/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Chemosphere ; 173: 622-629, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28117094

RESUMO

Biostabilization of cadmium, a hazardous chemical found widely in China, was attempted using Enterobacter cloacae TU (E.cloacae TU). A cadmium (Cd)-tolerant E.cloacae TU was obtained by mutagenesis using an atmosphere pressure glow discharge plasma system, and it displayed regular growth behavior in the presence of 250 mg/L Cd in solution. The maximum stabilization capacity of E.cloacae TU toward Cd reached 67.0 ± 3.5 mg/g dry cell weight at an initial Cd concentration of 200 mg/L. The percentage of Cd removal by E.cloacae TU reached 97.4± 0.3% at an initial Cd concentration of 20 mg/L. A desorption experiment confirmed both extracellular adsorption and intracellular uptake contribute to biostabilization, although Cd was mainly distributed on the surface of E.cloacae TU cells due to over-secretion of extracellular polysaccharides under Cd stimulus. The changes in morphology and functional groups of the E.cloacae TU cell surface in the presence of Cd were analyzed using X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectoscopy (FT-IR). The feasibility of using E.cloacae TU for this purpose was further confirmed by on site remediation, in which the application of E.cloacae TU reduced the bioavailability and moreover the accumulation of Cd in tobacco plants without affecting the quality of flue-cured tobacco.


Assuntos
Cádmio/química , Cádmio/metabolismo , Enterobacter cloacae/citologia , Enterobacter cloacae/isolamento & purificação , Nicotiana/metabolismo , Adsorção , Biodegradação Ambiental , Cádmio/isolamento & purificação , China , Enterobacter cloacae/metabolismo , Espectroscopia Fotoeletrônica , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...