Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
Adv Sci (Weinh) ; : e2403262, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973296

RESUMO

Despite docetaxel combined with cisplatin and 5-fluorouracil (TPF) being the established treatment for advanced nasopharyngeal carcinoma (NPC), there are patients who do not respond positively to this form of therapy. However, the mechanisms underlying this lack of benefit remain unclear. DCAF7 is identified as a chemoresistance gene attenuating the response to TPF therapy in NPC patients. DCAF7 promotes the cisplatin resistance and metastasis of NPC cells in vitro and in vivo. Mechanistically, DCAF7 serves as a scaffold protein that facilitates the interaction between USP10 and G3BP1, leading to the elimination of K48-linked ubiquitin moieties from Lys76 of G3BP1. This process helps prevent the degradation of G3BP1 via the ubiquitin‒proteasome pathway and promotes the formation of stress granule (SG)-like structures. Moreover, knockdown of G3BP1 successfully reversed the formation of SG-like structures and the oncogenic effects of DCAF7. Significantly, NPC patients with increased levels of DCAF7 showed a high risk of metastasis, and elevated DCAF7 levels are linked to an unfavorable prognosis. The study reveals DCAF7 as a crucial gene for cisplatin resistance and offers further understanding of how chemoresistance develops in NPC. The DCAF7-USP10-G3BP1 axis contains potential targets and biomarkers for NPC treatment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38996184

RESUMO

Carbon electrodes are ideal for electrochemistry with molecular catalysts, exhibiting facile charge transfer and good stability. Yet for solar-driven catalysis with semiconductor light absorbers, stable semiconductor/carbon interfaces can be difficult to achieve, and carbon's high optical extinction means it can only be used in ultrathin layers. Here, we demonstrate a plasma-enhanced chemical vapor deposition process that achieves well-controlled deposition of out-of-plane "fuzzy" graphene (FG) on thermally oxidized Si substrates. The resulting Si|FG interfaces possess a silicon oxycarbide (SiOC) interfacial layer, implying covalent bonding between Si and the FG film that is consistent with the mechanical robustness observed from the films. The FG layer is uniform and tunable in thickness and optical transparency by deposition time. Using p-type Si|FG substrates, noncovalent immobilization of cobalt phthalocyanine (CoPc) molecular catalysts was employed for the photoelectrochemical reduction of CO2 in aqueous solution. The Si|FG|CoPc photocathodes exhibited good catalytic activity, yielding a current density of ∼1 mA/cm2, Faradaic efficiency for CO of ∼70% (balance H2), and stable photocurrent for at least 30 h at -1.5 V vs Ag/AgCl under 1-sun illumination. The results suggest that plasma-deposited FG is a robust carbon electrode for molecular catalysts and suitable for further development of aqueous-stable Si photocathodes for CO2 reduction.

3.
J Thorac Dis ; 16(6): 3696-3710, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38983166

RESUMO

Background: The incidence and risk factors for recurrent primary spontaneous pneumothorax (PSP) after video-assisted thoracoscopic surgery (VATS) remain controversial. A systematic review and meta-analysis were conducted to determine the incidence and risk factors for recurrence of PSP after VATS. Methods: A systematic search of PubMed, Web of Science, Embase, and Cochrane Library databases was conducted to identify studies that reported the rate and risk factors for recurrence of PSP after VATS published up to December 2023. The pooled recurrence rate and odds ratio (OR) with 95% confidence interval (CI) were calculated using a random-effects model. In addition, risk factors were similarly included in the meta-analysis, and sources of heterogeneity were explored using meta-regression analysis. Results: A total of 72 studies involving 23,531 patients were included in the meta-analysis of recurrence. The pooled recurrence rate of PSP after VATS was 10% (95% CI: 8-12%). Male sex (OR: 0.61; 95% CI: 0.41-0.92; P=0.02), younger age [mean difference (MD): -2.01; 95% CI: -2.57 to -1.45; P<0.001), lower weight (MD: -1.57; 95% CI: -3.03 to -0.11; P=0.04), lower body mass index (BMI) (MD: -0.73; 95% CI: -1.08 to 0.37; P<0.001), and history of contralateral pneumothorax (OR: 2.46; 95% CI: 1.56-3.87; P<0.001) were associated with recurrent PSP, whereas height, smoking history, affected side, stapling line reinforcement, and pleurodesis were not associated with recurrent PSP after VATS. Conclusions: The recurrence rate of PSP after VATS remains high. Healthcare professionals should focus on factors, including sex, age, weight, BMI, and history of contralateral pneumothorax, that may influence recurrence.

4.
Langmuir ; 40(28): 14291-14302, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38950193

RESUMO

The key to enhancing water electrolysis efficiency lies in selecting highly efficient catalysts. Currently, high-entropy alloys (HEAs) are utilized in electrocatalysis applications owing to their diverse elemental composition, disordered elemental distribution, and the high solubility of each element, endowing them with excellent catalytic performance. The experiments were conducted using isoatomic FeNiCrMo HEA as a precursor, with a high-activity three-dimensional nanoporous structure rapidly synthesized via electrochemical one-step dealloying in a choline chloride-thiourea (ChCl-TU) deep eutectic solvent (DES). The results indicate that the dealloyed Fe20Co20Ni20Cr20Mo20 HEA mainly consists of two phases: face-centered cubic and σ phases. The imbalance in the distribution of elements in these two phases leads to quite different corrosion speeds with the FCC phase being preferentially corroded. Furthermore, synergistic electron coupling between surface atoms in the three-dimensional nanoporous structure strengthens the behavior of the oxygen evolution reaction (OER). At a current density of 40 mA cm-2, the overpotential after dealloying decreased to 370 mV, demonstrating excellent stability. The technique demonstrated in this work provides a novel approach to improve the catalytic activity of OER.

5.
Front Pharmacol ; 15: 1365639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021837

RESUMO

Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.

6.
Huan Jing Ke Xue ; 45(7): 4023-4031, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022950

RESUMO

Nitrogen loss from rice systems is an important source of agricultural non-point source pollution. Many studies revolve around reducing the rate of nitrogen fertilizer application. However, studies examining the characteristics of nitrogen loss in multiple loss paths (runoff, leaching, and lateral seepage) under different straw and fertilizer managements are lacking. Therefore, a study was carried out based on a rice field planted for more than 20 years with straw continuously returned to the field for more than 5 years in Taihu lake basin. The effects of straw and fertilizer managements on nitrogen loss in different paths during the whole growth period of rice were studied. Moreover, straw and fertilizer managements were evaluated by their production suitability and environmental friendliness based on crop yield, nitrogen use efficiency, and nitrogen loss. The results showed that straw removal from the field increased the response sensitivity of nitrogen accumulation in plant tissue to nitrogen application. The nitrogen loss in the rice season was 9-17 kg·hm-2, accounting for 5%-7% of the nitrogen application rate. Straw removal increased the risk of nitrogen loss when soaking water discharged. Straw returning could decrease the nitrogen loss by more than 15%, though the effect of straw on nitrogen loss via lateral seepage was not clear. Furthermore, the suitable substitution of organic fertilizer (30% in this study) could respectively reduce the amount of nitrogen loss via runoff, leaching, and lateral seepage by 16%, 26%, and 37% compared with the fertilizer application under the same nitrogen gradient. In conclusion, the implementation of straw returning and fertilizer type optimization measures effectively reduced the nitrogen loss for unit weight of rice production and realized the balance between agricultural production and environmental protection.


Assuntos
Fertilizantes , Lagos , Nitrogênio , Oryza , Caules de Planta , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Nitrogênio/metabolismo , China , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/química , Agricultura/métodos , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo
8.
J Am Chem Soc ; 146(28): 19137-19145, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953468

RESUMO

Anthracenylidene is an intriguing structural unit with potential in various fields. The study presents a novel approach to introducing axial chirality into this all-carbon core skeleton through a remotely controlled desymmetrization strategy. A palladium-catalyzed enantioselective Heck arylation of exocyclic double bond of anthracene with two distinct substituents at the C10 position is harnessed to realize such a transformation. The judicious identification of the P-centrally chiral ligand is pivotal to ensure the competitive competence in reactivity and stereocontrol when the heteroatom handle is absent from the anthracenylidene skeleton. Both C10 mono- and disubstituted substrates were compatible for the established catalytic system, and structurally diverse anthracenylidene-based frameworks were forged with good-to-high enantiocontrol. The subsequent derivatization of the obtained products yielded a valuable array of centrally and axially chiral molecules, thus emphasizing the practicality of this chemistry. DFT calculations shed light on the catalytic mechanism and provided insights into the origin of the experimentally observed enantioselectivity for this reaction.

9.
Org Lett ; 26(24): 5115-5119, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38862412

RESUMO

An ammonium ylide-based relay annulation was disclosed, which uses DABCO as the catalyst and oxindole-derived α,ß-unsaturated ketimines and γ-bromo-crotonates as the starting materials. This method enables the rapid assembly of a series of structurally novel spiro-polycyclic oxindoles containing a bicyclo[4.1.0]heptane moiety through simultaneous generation of three new bonds and two rings in one step under mild reaction conditions.

10.
Drug Resist Updat ; 76: 101111, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38908233

RESUMO

Gemcitabine (GEM) based induction chemotherapy is a standard treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, approximately 15 % of patients are still resistant to GEM-containing chemotherapy, which leads to treatment failure. Nevertheless, the underlying mechanisms of GEM resistance remain poorly understood. Herein, based on a microarray analysis, we identified 221 dysregulated lncRNAs, of which, DYNLRB2-AS1 was one of the most upregulated lncRNAs in GEM-resistance NPC cell lines. DYNLRB2-AS1 was shown to function as contain an oncogenic lncRNA that promoted NPC GEM resistance, cell proliferation, but inhibited cell apoptosis. Mechanistically, DYNLRB2-AS1 could directly bind to the DHX9 protein and prevent its interaction with the E3 ubiquitin ligase PRPF19, and thus blocking PRPF19-mediated DHX9 degradation, which ultimately facilitated the repair of DNA damage in the presence of GEM. Clinically, higher DYNLRB2-AS1 expression indicated an unfavourable overall survival of NPC patients who received induction chemotherapy. Overall, this study identified the oncogenic lncRNA DYNLRB2-AS1 as an independent prognostic biomarker for patients with locally advanced NPC and as a potential therapeutic target for overcoming GEM chemoresistance in NPC.

11.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920362

RESUMO

Twelve compounds, comprising of four new ones, 6ß,7α-limondiol (1) and ethyl 19-hydroxyisoobacunoate diosphenol (2), N-benzoyl 3-prenyltyramine (9) and 9-O-methyl integrifoliodiol (12), were isolated from the twigs with leaves of Tetradium trichotomum. The structures were elucidated by analysis of MS, NMR, and single-crystal X-ray diffraction. Compounds 1, 6, 8, 9 and 12 exhibited immunosuppressive activities in vitro against the proliferation of ConA-induced T lymphocytes and LPS-induced B cells.

12.
Nat Commun ; 15(1): 5300, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906860

RESUMO

Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.


Assuntos
Docetaxel , Resistencia a Medicamentos Antineoplásicos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Piroptose , Ubiquitina-Proteína Ligases , Ubiquitinação , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Dinaminas/metabolismo , Dinaminas/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Gasderminas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Piroptose/genética , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Transl Med ; 22(1): 572, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880914

RESUMO

BACKGROUND: Accurately identifying the risk level of drug combinations is of great significance in investigating the mechanisms of combination medication and adverse reactions. Most existing methods can only predict whether there is an interaction between two drugs, but cannot directly determine their accurate risk level. METHODS: In this study, we propose a multi-class drug combination risk prediction model named AERGCN-DDI, utilizing a relational graph convolutional network with a multi-head attention mechanism. Drug-drug interaction events with varying risk levels are modeled as a heterogeneous information graph. Attribute features of drug nodes and links are learned based on compound chemical structure information. Finally, the AERGCN-DDI model is proposed to predict drug combination risk level based on heterogenous graph neural network and multi-head attention modules. RESULTS: To evaluate the effectiveness of the proposed method, five-fold cross-validation and ablation study were conducted. Furthermore, we compared its predictive performance with baseline models and other state-of-the-art methods on two benchmark datasets. Empirical studies demonstrated the superior performances of AERGCN-DDI. CONCLUSIONS: AERGCN-DDI emerges as a valuable tool for predicting the risk levels of drug combinations, thereby aiding in clinical medication decision-making, mitigating severe drug side effects, and enhancing patient clinical prognosis.


Assuntos
Redes Neurais de Computação , Humanos , Interações Medicamentosas , Combinação de Medicamentos , Medição de Risco , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Reprodutibilidade dos Testes , Gráficos por Computador
14.
Bioact Mater ; 39: 239-254, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38832303

RESUMO

Immunosuppression tumor microenvironment (TME) seriously impedes anti-tumor immune response, resulting in poor immunotherapy effect of cancer. This study develops a folate-modified delivery system to transport the plasmids encoding immune stimulatory chemokine CKb11 and PD-L1 inhibitors to tumor cells, resulting in high CKb11 secretion from tumor cells, successfully activating immune cells and increasing cytokine secretion to reshape the TME, and ultimately delaying tumor progression. The chemokine CKb11 enhances the effectiveness of tumor immunotherapy by increasing the infiltration of immune cells in TME. It can cause high expression of IFN-γ, which is a double-edged sword that inhibits tumor growth while causing an increase in the expression of PD-L1 on tumor cells. Therefore, combining CKb11 with PD-L1 inhibitors can counterbalance the suppressive impact of PD-L1 on anti-cancer defense, leading to a collaborative anti-tumor outcome. Thus, utilizing nanotechnology to achieve targeted delivery of immune stimulatory chemokines and immune checkpoint inhibitors to tumor sites, thereby reshaping immunosuppressive TME for cancer treatment, has great potential as an immunogene therapy in clinical applications.

15.
Chem Sci ; 15(20): 7502-7514, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784726

RESUMO

The exploitation of new reactive species and novel transformation modes for their synthetic applications have significantly promoted the development of synthetic organic methodology, drug discovery, and advanced functional materials. α-Iminyl radical cations, a class of distonic ions, exhibit great synthetic potential for the synthesis of valuable molecules. For their generation, radical conjugate addition to α,ß-unsaturated iminium ions represents a concise yet highly challenging route, because the in situ generated species are short-lived and highly reactive and they have a high tendency to cause radical elimination (ß-scission) to regenerate the more stable iminium ions. Herein, we report a new transformation mode of the α-iminyl radical cation, that is to say, 1,5-hydrogen atom transfer (1,5-HAT). Such a strategy can generate a species bearing multiple reactive sites, which serves as a platform to realize (asymmetric) relay annulations. The present iron/secondary amine synergistic catalysis causes a modular assembly of a broad spectrum of new structurally fused pyridines including axially chiral heterobiaryls, and exhibits good functional group tolerance. A series of mechanistic experiments support the α-iminyl radical cation-induced 1,5-HAT, and the formation of several radical species in the relay annulations. Various synthetic transformations of the reaction products demonstrate the usefulness of this relay annulation protocol for the synthesis of significant molecules.

17.
Arch Med Sci ; 20(2): 506-516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757038

RESUMO

Primary Sjögren's syndrome (pSS) is a chronic, systemic autoimmune disease characterized by dryness of the eyes and mouth. The histological feature is mononuclear cell infiltration in exocrine glands, primarily salivary and lachrymal glands. As the disease progresses, some other tissues and organs may be involved and extraglandular manifestations ensue. The major current treatments are palliative and empirical, and in most cases the outcomes are not satisfactory. Emerging data indicate a critical role of lymphocytes in its development and progression. While pioneering work targeting B cells has demonstrated some encouraging results, more trials are warranted to validate the safety and efficacy. In addition, modulation of T cell function with abatacept ameliorates the severity of pSS. Furthermore, clinical trials to inhibit important cytokines involved in its formation have been carried out. In this article, we summarize and compare current biological therapies in order to find new and effective treatments for pSS.

18.
Small Methods ; : e2400304, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577823

RESUMO

Intracerebral hemorrhage (ICH) represents one of the most severe subtypes of stroke. Due to the complexity of the brain injury mechanisms following ICH, there are currently no effective treatments to significantly improve patient functional outcomes. Curcumin, as a potential therapeutic agent for ICH, is limited by its poor water solubility and oral bioavailability. In this study, mPEG-PCL is used to encapsulate curcumin, forming curcumin nanoparticles, and utilized the intranasal administration route to directly deliver curcumin nanoparticles from the nasal cavity to the brain. By inhibiting pro-inflammatory neuroinflammation of microglia following ICH in mice, reprogramming pro-inflammatory microglia toward an anti-inflammatory function, and consequently reducing neuronal inflammatory death and hematoma volume, this approach improved blood-brain barrier damage in ICH mice and promoted the recovery of neurological function post-stroke. This study offers a promising therapeutic strategy for ICH to mediate neuroinflammatory microenvironments.

19.
MedComm (2020) ; 5(4): e524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585232

RESUMO

Enteric IL-17RA deficiency leads to gut dysbiosis, consequently initiating the proliferation of tumors at remote locations. The deficiency or blockade of enteric IL-17RA induces the secretion of IL-17A by B cells and Th17 cells in response to microbial signals, resulting in a systemic elevation of IL-17A and fostering the growth of remote tumors. This figure was created with BioRender.com.

20.
J Phys Condens Matter ; 36(33)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38684164

RESUMO

The thermal transport properties of mantle minerals are of paramount importance to understand the thermal evolution processes of the Earth. Here, we perform extensively structural searches of two-dimensional MgSiO3monolayer by CALYPSO method and first-principles calculations. A stable MgSiO3monolayer withPmm2 symmetry is uncovered, which possesses a wide indirect band gap of 4.39 eV. The calculations indicate the lattice thermal conductivities of MgSiO3monolayer are 49.86 W (mK)-1and 9.09 W (mK)-1inxandydirections at room temperature. Our findings suggest that MgSiO3monolayer is an excellent low-dimensional thermoelectric material with highZTvalue of 4.58 from n-type doping in theydirection at 2000 K. The unexpected anisotropic thermal transport of MgSiO3monolayer is due to the puckered crystal structure and the asymmetric phonon dispersion as well as the distinct electron states around the Fermi level. These results offer a detailed description of structural and thermal transport properties of MgSiO3monolayer at extreme conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...