Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610321

RESUMO

The sensitivity and accuracy of nanopore sensors are severely hindered by the high noise associated with solid-state nanopores. To mitigate this issue, the deposition of organic polymer materials onto silicon nitride (SiNx) membranes has been effective in obtaining low-noise measurements. Nonetheless, the fabrication of nanopores sub-10 nm on thin polymer membranes remains a significant challenge. This work proposes a method for fabricating nanopores on polymethyl methacrylate (PMMA) membrane by the local high electrical field controlled breakdown, exploring the impact of voltage and current on the breakdown of PMMA membranes and discussing the mechanism underlying the breakdown voltage and current during the formation of nanopores. By improving the electric field application method, transient high electric fields that are one-seven times higher than the breakdown electric field can be utilized to fabricate nanopores. A comparative analysis was performed on the current noise levels of nanopores in PMMA-SiNx composite membranes and SiNx nanopores with a 5 nm diameter. The results demonstrated that the fast fabrication of nanopores on PMMA-SiNx membranes exhibited reduced current noise compared to SiNx nanopores. This finding provides evidence supporting the feasibility of utilizing this technology for efficiently fabricating low-noise nanopores on polymer composite membranes.

2.
Bioelectrochemistry ; 157: 108651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38281367

RESUMO

Due to the wide range of electrochemical devices available, DNA nanostructures and material-based technologies have been greatly broadened. They have been actively used to create a variety of beautiful nanostructures owing to their unmatched programmability. Currently, a variety of electrochemical devices have been used for rapid sensing of biomolecules and other diagnostic applications. Here, we provide a brief overview of recent advances in DNA-based biomolecular assays. Biosensing platform such as electrochemical biosensor, nanopore biosensor, and field-effect transistor biosensors (FET), which are equipped with aptamer, DNA walker, DNAzyme, DNA origami, and nanomaterials, has been developed for amplification detection. Under the optimal conditions, the proposed biosensor has good amplification detection performance. Further, we discussed the challenges of detection strategies in clinical applications and offered the prospect of this field.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanoporos , Nanoestruturas , Técnicas Eletroquímicas/métodos , DNA/química , Nanoestruturas/química , DNA Catalítico/química , Técnicas Biossensoriais/métodos
4.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439626

RESUMO

The small current detection circuit is the core component of the accurate detection of the nanopore sensor. In this paper, a compact, low-noise, and high-speed trans-impedance amplifier is built for the nanopore detection system. The amplifier consists of two amplification stages. The first stage performs low-noise trans-impedance amplification by using ADA4530-1, which is a high-performance FET operational amplifier, and a high-ohm feedback resistor of 1 GΩ. The high pass shelf filter in the second stage recovers the higher frequency above the 3 dB cutoff in the first stage to extend the maximum bandwidth up to 50 kHz. The amplifier shows a low noise below sub-2 pA rms when tuned to have a bandwidth of around 5 kHz. It also guarantees a stable frequency response in the nanopore sensor.


Assuntos
Nanoporos , Impedância Elétrica
5.
Nanoscale ; 15(15): 7147-7153, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37009671

RESUMO

In this work, an innovative method based on a nanopipette assisted with o-phenylboronic acid-modified polyethyleneimine (PEI-oBA) is proposed to detect neutral polysaccharides with different degrees of polymerization. Herein, dextran is used as the research target. Dextran, with its low molecular weight (104 < MW < 105 Da), has important applications in medicine and is one of the best plasma substitutes at present. Through the interaction between the boric acid group and a hydroxyl group, the synthesized high-charge polymer molecule PEI-oBA combines with dextran, increasing the electrophoretic force and exclusion volume of the target molecule to obtain a high signal-to-noise ratio for nanopore detection. These results show that the current amplitude increased significantly with the increase of dextran molecular weight. Furthermore, an aggregation-induced emission (AIE) molecule was introduced to adsorb onto PEI-oBA to verify that PEI-oBA combined with a polysaccharide entered the nanopipette together and was driven by electrophoresis. With the introduction of the modifiability of polymer molecules, the proposed method is conducive to improving the nanopore detection sensitivity of other important molecules with low charges and low molecular weights.

6.
Int J Biol Macromol ; 239: 124271, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37019197

RESUMO

In this paper, the glass nanopore technology was proposed to detect a single molecule of starch dissolved in ionic liquid [1-butyl-3-methylimidazolium chloride (BmimCl)]. Firstly, the influence of BmimCl on nanopore detection is discussed. It is found that a certain amount of strong polar ionic liquids will disturb the charge distribution in nanopores and increase the detection noise. Then, by analysis of the characteristic current signal of the conical nanopore, the motion behaviour of starch near the entrance of the nanopore was studied and analysis the dominant ion of starch in the BmimCl dissolution process. Finally, based on nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy simply discussed the mechanism of amylose and amylopectin dissolved in BmimCl. These results confirm that branched chain structure would affect the dissolution of polysaccharides in ionic liquids and the contribution of anions to the dissolution of polysaccharides are dominant. It is further proved that the current signal can be used to judge the charge and structure information of the analyte, and the dissolution mechanism can be assist analyzed at the single molecule level.


Assuntos
Líquidos Iônicos , Nanoporos , Líquidos Iônicos/química , Amido/química , Espectroscopia de Ressonância Magnética , Amilopectina
7.
ACS Appl Mater Interfaces ; 14(37): 42102-42112, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36097412

RESUMO

AlH3 is a metastable hydride with a theoretical hydrogen capacity of 10.01 wt % and is very easy to decompose during ball milling especially in the presence of many catalysts, which will lead to the attenuation of the available hydrogen capacity. In this work, AlH3 was ball milled in air (called "air-milling") with layered Ti3C2 to prepare a Ti3C2-catalyzed AlH3 hydrogen storage material. Such air-milled and Ti3C2-catalyzed AlH3 possesses excellent hydrogen storage performances, with a low initial decomposition temperature of just 61 °C and a high hydrogen release capacity of 8.1 wt %. In addition, 6.9 wt % of hydrogen can be released within 20 min at constantly 100 °C, with a low activation energy as low as 40 kJ mol-1. Air-milling will lead to the formation of an Al2O3 oxide layer on the AlH3 particles, which will prevent continuous decomposition of AlH3 when milling with active layered Ti3C2. The layered Ti3C2 will grip on and intrude into the AlH3 particle oxide layers and then catalyze the decomposition of AlH3 during heating. The strategy employing air-milling as a synthesis method and utilizing layered Ti3C2 as a catalyst in this work can solve the key issue of severe decomposition during ball milling with catalysts economically and conveniently and thus achieve both high-capacity and low-temperature hydrogen storage of AlH3. This air-milling method is also effective for other active catalysts toward both reducing the decomposition temperature and increasing the available hydrogen capacity of AlH3.

8.
Anal Chim Acta ; 1208: 339778, 2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35525599

RESUMO

With the emergence of microRNAs as key biomarkers for disease diagnosis such as lung cancer, various techniques have been settled for their detection. However, these current methods require different amplification steps since numerous challenges for detecting circulating miRNAs are attributable to their intrinsic properties accounting for tiny sizes, high sequence similarity, and low abundance. Duplex specific nuclease (DSN)-based microRNA amplification has recently gained interest in biosensing applications thanks to its catalytic activity based on target recycling. In this context, we designed a highly selective, sensitive, and multiplexed fluorescence-based biosensor combining DSN enzyme and magnetic beads to detect three distinct microRNAs, including microRNA-21, microRNA-210, and microRNA-486-5p. By exploiting the above approach, we were able to detect as low as 98 aM, 120 aM, and 300 aM of mir-21, miR-210, and miR-486-5p, respectively. Furthermore, this recommended strategy displays a high selectivity toward an entirely matched target than the off-target. These results are ascribed to the potent DSN enzyme activity and to the locked nucleic acid (LNA)-modified DNA probe that boosted the hetero-duplex probe/target stability. Lastly, our proposed method was applied to detect microRNAs in the serum samples and displayed a high efficacy to discriminate between healthy controls and lung cancer patients. Furthermore, the analytical accuracy of the proposed strategy was validated with the computed tomography (CT) technique of the chest. Thus based on these findings, this strategy could open new directions for detecting microRNAs associated with several diseases.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , MicroRNAs , Técnicas Biossensoriais/métodos , Sondas de DNA/genética , Endonucleases , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Oligonucleotídeos
9.
Anal Chim Acta ; 1173: 338698, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34172149

RESUMO

A simple and effective fluorescence platform has been established for visualizing nanomaterials' protective effect of DNA from cellular enzyme digestion based on nanopipette. In a proof-of-concept trial, gold nanoparticles (AuNPs) protect aptamer was designed, and it used for Microcystin-LR (MC-LR) sensitive detection. In the absence of MC-LR, FAM-labeled aptamers were combined on AuNPs, resulting in weak fluorescence emission. In the presence of MC-LR, aptamer bound with MC-LR. The formed complex leaves the surface of AuNPs. With the addition of the deoxyribonuclease I (DNase I) enzyme, the aptamer was selectively cleavaged, and MC-LR was released as an additional target molecule to achieve signal amplification and obtain strong fluorescence intensity. At the optimized conditions, a wide linear range (0.25 nM-20 nM) of fluorescence response for MC-LR was obtained. Further, by electrochemically manipulation MC-LR and DNase I inside confining nanopipette, which is filled with aptamer/AuNPs. The fluorescence intensity change with the aptamer and AuNPs interaction, these results directly visualize the process of DNA cleavage, and the interaction with AuNPs can effectively prevent the cleavage at the nanoscale confinement. This convenient nanoscale device provides new kinetic information about the dynamic chemical processes at a single-molecule level.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Desoxirribonuclease I , Digestão , Ouro , Limite de Detecção , Toxinas Marinhas , Microcistinas
10.
Sci Total Environ ; 754: 142076, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920391

RESUMO

Individual cell heterogeneity within a population can be critical to its peculiar function and fate. Conventional algal cell-based assays mainly analyze the average responses from a population of algal cells. Therefore, the mechanisms through which changes in population characteristics are driven by the behavior of single algal cells are still not well understood. Algal cells may modulate their physiology and metabolism by changing their morphology in response to environmental stress. In this study, an algal single-cell culture and analysis system was developed to investigate the potential role of morphological changes by algal cells during adaptation to nutrient stress based on a microwell array chip. The surface-to-volume ratio of Microcystis aeruginosa (M. aeruginosa) and the volume of Scenedesmus obliquus (S. obliquus) significantly increased with increasing culture time under nutrient stress. The eccentricity of M. aeruginosa and S. obliquus gradually increased and decreased, respectively, with increasing culture time, indicating that the morphology of M. aeruginosa and S. obliquus became increasingly irregular and regular, respectively, under nutrient stress. There were significant correlations between the morphological characteristics and physiological characteristics of M. aeruginosa and S. obliquus under nutrient stress. In M. aeruginosa, an increased surface-to-volume ratio facilitated a high specific fluorescence intensity, specific Raman intensity, and maximum electron transport rate. In S. obliquus, increased cell volume enhanced nutrient absorption, which facilitated a higher specific growth rate. M. aeruginosa and S. obliquus adopted different adaptation strategies in response to nutrient stress based on morphological changes. These findings facilitate the development of management strategies for controlling harmful cyanobacterial blooms.


Assuntos
Microcystis , Scenedesmus , Aclimatação , Nutrientes
11.
Rev Sci Instrum ; 91(9): 093203, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33003785

RESUMO

The dielectric breakdown used to fabricate solid-state nanopores has separated the device from capital-intensive industries and has been widely adopted by various research teams, but there are still problems with low production efficiency and uncertain location. In this work, based on the transient breakdown phenomenon of nanofilms, a new type of dielectric breakdown apparatus for nanopore fabrication is reported. It integrates both nano-manipulation technology and dielectric breakdown nanopore fabrication technology. The nanometer distance detection method and circuit are introduced in detail. The generation principle and procedures of the transient high electric field are explained step by step. The characterization of the nanopores shows that this apparatus can fabricate sub-2 nm nanopores at a pre-located position. Besides, the nanopore diameter can be easily adjusted by setting the transient high electric field value.

12.
Talanta ; 195: 401-406, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625561

RESUMO

The analysis of trace microcystin-LR (MC-LR) plays important roles in environmental fields, especially in monitoring domestic water quality and safety, since it has particularly harmful effect on wild and domestic animals as well as humans at low doses. Herein, we combine confocal Raman spectroscopy with SERS-AG substrate to characterize the "fingerprint" information of MC-LR directly. High sensitivity of SERS-AG substrates was verified by utilizing the probe molecule Rhodamine 6 G. Mapping spectra demonstrated good reproducibility of MC-LR identification with label-free surface-enhanced Raman scattering (SERS) strategy. Differences between SERS spectra of MC-LR and R6G, microcystin-RR were evaluated by calculating their scores and loading weights with an unsupervised exploratory principal component analysis method. Then, relationship between Raman intensities and concentrations was preliminary analyzed with SERS spectra of MC-LR and the lowest concentration of MC-LR identification was 10-6 mg L-1 while using SERS-AG substrate. Thereafter, 68.6% quantitative recovery of 10-3 mg L-1 MC-LR in tap water samples was obtained by the proposed label-free SERS method. These results showed that confocal Raman spectroscopy with label-free surface-enhanced Raman scattering strategy can handle the identification of trace MC-LR for monitoring water quality and safety worldwide in future.


Assuntos
Microcistinas/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Corantes Fluorescentes/análise , Toxinas Marinhas , Rodaminas/análise , Análise Espectral Raman
13.
RSC Adv ; 9(27): 15431-15436, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35514824

RESUMO

Nanopore technology was introduced for the study of the dynamic interactions between bovine serum albumin (BSA) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) phospholipids based on a modified nanopore. The results reveal that the interaction mechanism between DOPE and BSA is affected by the pH of the subphase. Far above the BSA isoelectric point (pH > 7), a weaker hydrophobic interaction and stronger electrostatic repulsion exist between the DOPE and BSA molecules. At pH = 7, the BSA structure nearly does not change, and the interaction is weak. At pH 5 and pH 6, BSA is marginally affected by the adsorption interaction, and below pH 5, the DOPE film becomes disordered, so there is a strong repulsive force interaction between the BSA and DOPE.

14.
Langmuir ; 34(49): 14825-14833, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30021440

RESUMO

A versatile and highly sensitive strategy for nanopore detection of microcystin-LR (MC-LR) is proposed herein based on the aptamer and host-guest interactions by employing a gold nanoparticle (AuNP) probe. The aptamer of MC-LR and its complementary DNA (cDNA) are respectively immobilized on AuNPs with distinct sizes (5 nm AuNPs for the aptamer and 20 nm for the cDNA), and the constructed polymeric AuNP network via the hybridization of the aptamer and cDNA was disintegrated upon the addition of MC-LR. The specific interactions between the aptamer and MC-LR disrupt and release the cDNA-AuNPs that were then removed by centrifugation, leaving the MC-LR-aptamer-AuNP species in the supernatant for subsequent nanopore determination. By monitoring the current blockade of released MC-LR-aptamer-AuNPs using a specific tailored nanopore (10 and 20 nm in diameter, generated by current dielectric breakdown), we could deduce the presence of MC-LR, as the bulky NP network could not pass through a nanopore with a relatively smaller size. We realized the detection of MC-LR with a concentration as low as 0.1 nM; additionally, we have proved the specificity of the interaction between the aptamer and MC-LR by replacing MC-LR with other congener toxins (MC-RR and MC-YR), chlorophyll (a component abundantly coexists in water), and the mixture of the four.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 204: 287-294, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-29945111

RESUMO

The assessment for cell physiology and growth phases of microalgae plays important roles in ecological and environmental fields since it can be used to forecast water eutrophication level worldwidely. Herein, growth phases and environmental conditions of microalgae were assessed by combining resonance Raman mapping spectroscopy with multivariate analysis methods. And, primary Raman characteristic peaks of microalgae were mined with two-dimensional synchronous spectra. Thereafter, algal growth phases and environmental conditions of microalgae were preliminary classified with different tendencies of characteristic Raman peaks by unsupervised principal component analysis (PCA) and support vector machine (SVM) methods. Our results demonstrated that resonance Raman mapping spectroscopy with PCA and SVM classification models can be used to assess algal growth phases and preliminary predict environmental conditions with characteristic Raman spectra of microalgae in water bodies.


Assuntos
Eutrofização/fisiologia , Microalgas , Análise Espectral Raman/métodos , Células Cultivadas , Meios de Cultura , Microalgas/química , Microalgas/crescimento & desenvolvimento , Microalgas/fisiologia , Modelos Biológicos , Análise de Componente Principal , Máquina de Vetores de Suporte
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 190: 417-422, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28957703

RESUMO

The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.


Assuntos
Microalgas/classificação , Análise de Componente Principal , Análise Espectral Raman , Carotenoides/química , Análise Discriminante , Análise dos Mínimos Quadrados
17.
ACS Omega ; 2(10): 7127-7135, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457292

RESUMO

In this work, we demonstrate a chemical modification approach, by means of covalent-bonding amphoteric poly-l-lysine (PLL) on the interior nanopore surface, which could intensively protect the pore from etching when exposed in the electrolyte under various pH conditions (from pH 4 to 12). Nanopore was generated via simple current dielectric breakdown methodology, covalent modification was performed in three steps, and the functional nanopore was fully characterized in terms of chemical structure, hydrophilicity, and surface morphology. I-V curves were recorded under a broad range of pH stimuli to evaluate the stability of the chemical bonding layer; the plotted curves demonstrated that nanopore with a covalent bonding layer has good pH tolerance and showed apparent reversibility. In addition, we have also measured the conductance of modified nanopore with varied KCl concentration (from 0.1 mM to 1 M) at different pH conditions (pHs 5, 7, 9, and 11). The results suggested that the surface charge density does not fluctuate with variation in salt concentration, which inferred that the SiN x nanopore was fully covered by PLL. Moreover, the PLL functionalized nanopore has realized the detection of single-stranded DNA homopolymer translocation under bias voltage of 500 mV, and the 20 nt homopolymers could be evidently differentiated in terms of the current amplitude and dwell time at pHs 5, 8, and 11.

18.
Chemosphere ; 161: 96-103, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27423126

RESUMO

Triphenyltin (TPhT) is a kind of organotin compounds which have been used ubiquitously as herbicide, pesticide, and fungicide in agriculture. The present study provides the possibility to detect and monitor TPhT with normal Raman spectroscopy and surface enhanced Raman scattering (SERS) spectroscopy. Firstly, the complete vibrational Raman spectra characterization of TPhT along with the IR spectroscopy were reported for the first time. Then a wide range of pH values were carried out to choose the optimal pH value in TPhT detection by using Raman spectroscopy. Afterwards, Raman spectra of various TPhT solutions were collected and analyzed. The results indicate that the optimal pH value for TPhT detection by Raman spectroscopy is 5.5, and with silver nanoparticles (Ag NPs) as SERS substrate is an effective technique for trace TPhT detection with an enhancement by 5 orders of magnitude and the detection limit can be as low as 0.6 ng/L within less than 30 s. Finally, in this study, the residual of TPhT on apple peel was investigated by casting different concentrations of TPhT on apple peel under the current optimized condition. The result demonstrates that TPhT could be detected based on its SESR spectra at 6.25 ng/cm(2) in standard solutions.


Assuntos
Monitoramento Ambiental/métodos , Compostos Orgânicos de Estanho/análise , Análise Espectral Raman , Limite de Detecção , Nanopartículas Metálicas/química , Prata/química , Soluções
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 137: 1092-9, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25300041

RESUMO

A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.


Assuntos
Aditivos Alimentares/análise , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Naftóis/análise , Rodaminas/análise , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...