Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 258: 121779, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772321

RESUMO

Aquatic biodiversity plays a significant role in maintaining the ecological balance and the overall health of riverine ecosystems. Elevation is an important factor influencing biodiversity patterns. However, it is still unclear through which pathway elevation influences riverine biodiversity at different trophic levels. In this study, the elevation-associated pathways affecting aquatic biodiversity at different trophic levels were explored using structural equation modeling (SEM) and taking the Bayin River, China as the case. The results showed that the elevational patterns were different among aquatic organisms at different trophic levels. For macroinvertebrates and bacteria, the pattern was hump-shaped; while for phytoplankton and zooplankton, it was U-shaped. Building upon these observed elevational patterns, our investigation delved into the direct and indirect pathways through which elevation influences aquatic biodiversity. We found that elevation exerts an impact on aquatic biodiversity via indirect pathways. For all aquatic organisms investigated, the major pathway through which elevation influences biodiversity is mediated by water temperature and water quality. For aquatic organisms at higher trophic levels, like macroinvertebrates and zooplankton, the crucial pathway is also mediated by the landscape. The results of this study contributed to understanding the effects of elevation on aquatic organisms at different trophic levels and provided an important basis for the assessment of riverine biodiversity at large scales.


Assuntos
Biodiversidade , Rios , Zooplâncton , Animais , China , Fitoplâncton , Altitude , Organismos Aquáticos , Invertebrados
2.
Ecotoxicology ; 33(1): 85-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193982

RESUMO

The extensive utilization of Zinc Oxide nanoparticles (ZnO NPs) has garnered significant attention due to their detrimental impacts on ecosystem. Unfortunately, ecotoxicity of ZnO NPs in coastal waters with fluctuating salinity has been disregarded. This study mainly discussed the toxic effects of ZnO NPs on species inhabiting the transition zones between freshwater and brackish water, who are of great ecological and economic importance among fish. To serve as the model organism, Takifugu obscurus, a juvenile euryhaline fish, was exposed to different ZnO NPs concentrations (0-200 mg/L) and salinity levels (0 and 15 ppt). The results showed that a moderate increase in salinity (15 ppt) could alleviate the toxic effect of ZnO NPs, as evidenced by improved survival rates. The integrated biomarker response index on oxidative stress also revealed that the toxicity of ZnO NPs was higher in freshwater compared to brackish water. These outcomes can be attributed to higher salinity (15 ppt) reducing the bioavailability of ZnO NPs by facilitating their aggregation and inhibiting the release of metal ions. It is noteworthy that elevated salinity was found to alleviate ZnO NPs toxicity by means of osmotic adjustment via the activation of Na+/K+-ATPase activity. This study demonstrates the salinity-dependent effect of ZnO NPs on T. obscurus, suggesting the possibility for euryhaline fish like T. obscurus to adapt their habitat towards more saline environments, under constant exposure to ZnO NPs.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Antioxidantes , Ecossistema , Peixes , Nanopartículas/toxicidade , Salinidade , Takifugu/fisiologia , Óxido de Zinco/toxicidade
3.
J Environ Manage ; 341: 118027, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141723

RESUMO

Exploring the response between benthic community changes and environmental variables has significance for restoring the health of river ecosystems. However, little is known of the impact on communities of interactions between multiple environmental factors, and frequent changes in the flow of mountain rivers are different from those in the flow of plain river networks, which also impact differently the benthic community. Thus, there is a need for research on the response of benthic communities to environmental changes in mountain rivers under flow regulation. In this study, we collected samples from the Jiangshan River in the dry season (November 2021) and the wet season (July 2022) to investigate the aquatic ecology and benthic macroinvertebrate communities in the watershed. Multi-dimension analyses were used to analyze the spatial variation in the community structure and response of benthic macroinvertebrates to multiple environmental factors. In addition, the explanatory power of the interaction between multiple factors on the spatial variation of communities, and the distribution characteristics of benthic community and their causes were investigated. The results showed that herbivores are the most abundant forms in the benthic community of mountain rivers. The structure of benthic community in Jiangshan River was significantly affected by water quality and substrate, whereas the overall community structure was affected by river flow conditions. Furthermore, nitrite nitrogen and ammonium nitrogen were the key environmental factors impacting the spatial heterogeneity of communities during the dry and wet season, respectively. Meanwhile, the interaction between these environmental factors showed a synergistic effect, enhancing the influence of these environmental factors on community structure. Thus, controlling urban and agricultural pollution and releasing ecological flow would be effective strategies to improve benthic biodiversity. Our study showed that using the interaction of environmental factors was a suitable way to evaluate the association between environmental variables and variation in benthic macroinvertebrate community structure in river ecosystems.


Assuntos
Invertebrados , Rios , Animais , Invertebrados/fisiologia , Rios/química , Ecossistema , Monitoramento Ambiental , Qualidade da Água , Biodiversidade
4.
Biology (Basel) ; 11(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552338

RESUMO

Field investigation indicated that the reduction in fish spawning was associated with the alteration in water temperatures, even a 2-3 °C monthly difference due to reservoir operations. However, the physiological mechanism that influences the development of fish ovary (DFO) remains unclear. Thus, experiments of Coreius guichenoti were conducted at three different temperatures, optimal temperature (~20 °C, N) for fish spawning, lower (~17 °C, L), and higher (~23 °C, H), to reveal the effects of altered water temperature on the DFO. Comparisons were made between the L and N (LvsN) conditions and H and N (HvsN) conditions. Transcriptomic analysis differentially expressed transcripts (DETs) related to heat stress were observed only in LvsN conditions, indicating that the DFO showed a stronger response to changes in LvsN than in HvsN conditions. Upregulation of DETs of vitellogenin receptors in N temperature showed that normal temperature was conducive to vitellogenin entry into the oocytes. Other temperature-sensitive DETs, including microtubule, kinesin, dynein, and actin, were closely associated with cell division and material transport. LvsN significantly impacted cell division and nutrient accumulation in the yolk, whereas HvsN only influenced cell division. Our results highlight the impact of altered water temperature on the DFO, thereby providing insights for future reservoir operations regarding river damming and climate change and establishing fish conservation measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...