Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Bioact Mater ; 41: 427-439, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39188380

RESUMO

Approaches to regenerating bone often rely on integrating biomaterials and biological signals in the form of cells or cytokines. However, from a translational point of view, these approaches are challenging due to the sourcing and quality of the biologic, unpredictable immune responses, complex regulatory paths, and high costs. We describe a simple manufacturing process and a material-centric 3D-printed composite scaffold system (CSS) that offers distinct advantages for clinical translation. The CSS comprises a 3D-printed porous polydiolcitrate-hydroxyapatite composite elastomer infused with a polydiolcitrate-graphene oxide hydrogel composite. Using a micro-continuous liquid interface production 3D printer, we fabricate a precise porous ceramic scaffold with 60 wt% hydroxyapatite resembling natural bone. The resulting scaffold integrates with a thermoresponsive hydrogel composite in situ to fit the defect, which is expected to enhance surface contact with surrounding tissue and facilitate biointegration. The antioxidative properties of citrate polymers prevent long-term inflammatory responses. The CSS stimulates osteogenesis in vitro and in vivo. Within 4 weeks in a calvarial critical-sized bone defect model, the CSS accelerated ECM deposition (8-fold) and mineralized osteoid (69-fold) compared to the untreated. Through spatial transcriptomics, we demonstrated the comprehensive biological processes of CSS for prompt osseointegration. Our material-centric approach delivers impressive osteogenic properties and streamlined manufacturing advantages, potentially expediting clinical application for bone reconstruction surgeries.

2.
Res Sq ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39108474

RESUMO

Composite cranial defects have individual functional and aesthetic ramifications, as well as societal burden, while posing significant challenges for reconstructive surgeons. Single-stage composite reconstruction of these deformities entail complex surgeries that bear many short- and long-term risks and complications. Current research on composite scalp-cranial defects is sparse and one-dimensional, often focusing solely on bone or skin. Thus, there is an unmet need for a simple, clinically relevant composite defect model in rodents, where there is a challenge in averting healing of the skin component via secondary intention. By utilizing a customizable (3D-printed) wound obturator, the scalp wound can be rendered non-healing for a long period (more than 6 weeks), with the cranial defect patent. The wound obturator shows minimal biotoxicity and will not cause severe endocranium-granulation adhesion. This composite defect model effectively slowed the scalp healing process and preserved the cranial defect, embodying the characteristics of a "chronic composite defect". In parallel, an autologous reconstruction model was established as the positive control. This positive control exhibited reproducible healing of the skin within 3 weeks with variable degrees of osseointegration, consistent with clinical practice. Both models provide a stable platform for subsequent research not only for composite tissue engineering and scaffold design but also for mechanistic studies of composite tissue healing.

3.
J Mater Chem B ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210776

RESUMO

In this study, we have developed unique bioresorbable lithiated nanoparticles (LiCP, d50 = 20 nm), demonstrating a versatile material for bone repair and regeneration applications. The LiCPs are biocompatible even at the highest concentration tested (1000 µg mL-1) where bone marrow derived mesenchymal stem cells (BM-MSCs) maintained over 90% viability compared to the control. Notably, LiCP significantly enhanced the expression of osteogenic and angiogenic markers in vitro; collagen I, Runx2, angiogenin, and EGF increased by 8-fold, 8-fold, 9-fold, and 7.5-fold, respectively. Additionally, LiCP facilitated a marked improvement in tubulogenesis in endothelial cells across all tested concentrations. Remarkably, in an ectopic mouse model, LiCP induced mature bone formation, outperforming both the control group and non-lithiated nanoparticles. These findings establish lithiated nanoparticles as a highly promising material for advancing bone repair and regeneration therapies, offering dual benefits in osteogenesis and angiogenesis. The results lay the groundwork for future studies and potential clinical applications, where precise modulation of lithium release could tailor therapeutic outcomes to meet specific patient needs in bone and vascular tissue engineering.

4.
Genes Dis ; 11(6): 101344, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39188753

RESUMO

Recombinant adenovirus (rAdV) is a commonly used vector system for gene transfer. Efficient initial packaging and subsequent production of rAdV remains time-consuming and labor-intensive, possibly attributable to rAdV infection-associated oxidative stress and reactive oxygen species (ROS) production. Here, we show that exogenous GAPDH expression mitigates adenovirus-induced ROS-associated apoptosis in HEK293 cells, and expedites adenovirus production. By stably overexpressing GAPDH in HEK293 (293G) and 293pTP (293GP) cells, respectively, we demonstrated that rAdV-induced ROS production and cell apoptosis were significantly suppressed in 293G and 293GP cells. Transfection of 293G cells with adenoviral plasmid pAd-G2Luc yielded much higher titers of Ad-G2Luc at day 7 than that in HEK293 cells. Similarly, Ad-G2Luc was amplified more efficiently in 293G than in HEK293 cells. We further showed that transfection of 293GP cells with pAd-G2Luc produced much higher titers of Ad-G2Luc at day 5 than that of 293pTP cells. 293GP cells amplified the Ad-G2Luc much more efficiently than 293pTP cells, indicating that exogenous GAPDH can further augment pTP-enhanced adenovirus production. These results demonstrate that exogenous GAPDH can effectively suppress adenovirus-induced ROS and thus accelerate adenovirus production. Therefore, the engineered 293GP cells represent a superfast rAdV production system for adenovirus-based gene transfer and gene therapy.

5.
J Mater Chem B ; 12(25): 6005-6032, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38869470

RESUMO

Periodontitis is an immune-inflammatory disease caused by dental plaque, and deteriorates the periodontal ligament, causes alveolar bone loss, and may lead to tooth loss. To treat periodontitis, antibacterial and anti-inflammation approaches are required to reduce bone loss. Thus, appropriate drug administration methods are significant. Due to their "syringeability", biocompatibility, and convenience, injectable hydrogels and associated methods have been extensively studied and used for periodontitis therapy. Such hydrogels are made from natural and synthetic polymer materials using physical and/or chemical cross-linking approaches. Interestingly, some injectable hydrogels are stimuli-responsive hydrogels, which respond to the local microenvironment and form hydrogels that release drugs. Therefore, as injectable hydrogels are different and highly varied, we systematically reviewed the periodontal treatment field from three perspectives: raw material sources, cross-linking methods, and stimuli-responsive methods. We then discussed current challenges and opportunities for the translation of hydrogels to clinic, which may guide further injectable hydrogel designs for periodontitis.


Assuntos
Hidrogéis , Periodontite , Periodontite/tratamento farmacológico , Hidrogéis/química , Humanos , Animais , Injeções , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
6.
Am J Cancer Res ; 14(4): 1784-1801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726262

RESUMO

Chondrocyte hypertrophy and the expression of its specific marker, the collagen type X gene (COL10A1), constitute key terminal differentiation stages during endochondral ossification in long bone development. Mutations in the COL10A1 gene are known to cause schmid type metaphyseal chondrodysplasia (SMCD) and spondyloepiphyseal dyschondrodysplasia (SMD). Moreover, abnormal COL10A1 expression and aberrant chondrocyte hypertrophy are strongly correlated with skeletal diseases, notably osteoarthritis (OA) and osteosarcoma (OS). Throughout the progression of OA, articular chondrocytes undergo substantial changes in gene expression and phenotype, including a transition to a hypertrophic-like state characterized by the expression of collagen type X, matrix metalloproteinase-13, and alkaline phosphatase. This state is similar to the process of endochondral ossification during cartilage development. OS, the most common pediatric bone cancer, exhibits characteristics of abnormal bone formation alongside the presence of tumor tissue containing cartilaginous components. This observation suggests a potential role for chondrogenesis in the development of OS. A deeper understanding of the shifts in collagen X expression and chondrocyte hypertrophy phenotypes in OA or OS may offer novel insights into their pathogenesis, thereby paving the way for potential therapeutic interventions. This review systematically summarizes the findings from multiple OA models (e.g., transgenic, surgically-induced, mechanically-loaded, and chemically-induced OA models), with a particular focus on their chondrogenic and/or hypertrophic phenotypes and possible signaling pathways. The OS phenotypes and pathogenesis in relation to chondrogenesis, collagen X expression, chondrocyte (hypertrophic) differentiation, and their regulatory mechanisms were also discussed. Together, this review provides novel insights into OA and OS therapeutics, possibly by intervening the process of abnormal endochondral-like pathway with altered collagen type X expression.

7.
Pediatr Discov ; 2(1)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38784180

RESUMO

Periodontitis is a chronic inflammatory disease caused by plaque biofilm which shares risk factors with systemic chronic diseases such as diabetes, cardiovascular disease, and osteoporosis. Many studies have found increased prevalence and rate of progression of periodontal disease in children with common metabolic disorders. Although the causal relationship and specific mechanism between them has not been determined yet. The aim of this paper is to progress on the impact of metabolic disorders on periodontal health in children and the underlying mechanisms, which provides new evidences for the prevention and intervention of metabolic disorders and periodontitis in children.

8.
Nat Metab ; 6(6): 1076-1091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777856

RESUMO

Nutrient handling is an essential function of the gastrointestinal tract. Hormonal responses of small intestinal enteroendocrine cells (EECs) have been extensively studied but much less is known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. Here we show that colonic EEC deficiency leads to hyperphagia and obesity. Furthermore, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment, germ-free rederivation and transfer to germ-free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we show that differential glutamate production by intestinal microbiota corresponds to increased appetite and that colonic glutamate administration can directly increase food intake. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.


Assuntos
Colo , Células Enteroendócrinas , Microbioma Gastrointestinal , Obesidade , Animais , Células Enteroendócrinas/metabolismo , Camundongos , Colo/microbiologia , Colo/metabolismo , Obesidade/metabolismo , Obesidade/microbiologia , Camundongos Endogâmicos C57BL , Ácido Glutâmico/metabolismo , Eixo Encéfalo-Intestino , Hiperfagia/metabolismo
9.
Am J Transl Res ; 16(4): 1454-1467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715834

RESUMO

BACKGROUND AND AIMS: The type X collagen gene (Col10a1), is a specific molecular marker of hypertrophic chondrocytes during endochondral ossification. Col10a1 expression is known to be influenced by many regulators. In this study, we aim to investigate how DEAD-box helicase 5 (DDX5), a potential binding factor for Col10a1 enhancer, may play a role in Col10a1 expression and chondrocyte hypertrophic differentiation in vitro. METHODS: The potential binding factors of the 150-bp Col10a1 cis-enhancer were identified with the hTFtarget database. The expression of DDX5 and COL10A1 was detected by quantitative real-time PCR (qRT-PCR) and Western blot in chondrogenic ATDC5 and MCT cell models with or without Ddx5 knockdown or overexpression. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) were performed to determine the interaction between DDX5 and the Col10a1 enhancer. The effect and mechanism of DDX5 on chondrocyte differentiation and maturation was evaluated by alcian blue, alkaline phosphatase (ALP), and alizarin red staining in ATDC5 cell lines with stable knockdown of Ddx5. RESULTS: DDX5 was identified as a potential binding factor for the Col10a1 enhancer. The expression of DDX5 in hypertrophic chondrocytes was higher than that in proliferative chondrocytes. Knockdown of Ddx5 decreased, while overexpression of Ddx5 slightly increased COL10A1 expression. DDX5 promotes the enhancer activity of Col10a1 as demonstrated by dual-luciferase reporter assay, and the ChIP experiment suggests a direct interaction between DDX5 and the Col10a1 enhancer. Compared to the control (NC) group, we observed weaker alcian blue and ALP staining intensity in the Ddx5 knockdown group of ATDC5 cells cultured both for 7 and 14 days. Whereas weaker alizarin red staining intensity was only found in the Ddx5 knockdown group of cells cultured for 7 days. Meanwhile, knockdown of Ddx5 significantly reduced the level of runt-related transcription factor 2 (RUNX2) in related ATDC5 cells examined. CONCLUSIONS: Our results suggest that DDX5 acts as a positive regulator for Col10a1 expression and may cooperate with RUNX2 together to control Col10a1 expression and promote the proliferation and maturation of chondrocytes.

11.
Genes Dis ; 11(4): 101155, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523676

RESUMO

Genetic mutations in TP53 contribute to human malignancies through various means. To date, there have been a variety of therapeutic strategies targeting p53, including gene therapy to restore normal p53 function, mutant p53 rescue, inhibiting the MDM2-p53 interaction, p53-based vaccines, and a number of other approaches. This review focuses on the functions of TP53 and discusses the aberrant roles of mutant p53 in various types of cancer. Recombinant human p53 adenovirus, trademarked as Gendicine, which is the first anti-tumor gene therapy drug, has made tremendous progress in cancer gene therapy. We herein discuss the biological mechanisms by which Gendicine exerts its effects and describe the clinical responses reported in clinical trials. Notably, the clinical studies suggest that the combination of Gendicine with chemotherapy and/or radiotherapy may produce more pronounced efficacy in slowing tumor growth and progression than gene therapy/chemotherapy alone. Finally, we summarize the methods of administration of recombinant human p53 adenovirus for different cancer types to provide a reference for future clinical trials.

12.
Arthrosc Sports Med Rehabil ; 6(2): 100892, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362483

RESUMO

Purpose: To determine the reliability of 3-dimensional (3D) reconstruction of computed tomography (CT) imaging in evaluating acetabular rim morphology or acetabular rim osteophyte (ARO) existence and to group patients with femoroacetabular impingement (FAI) by ARO extent on coronal sections of CT and further compare clinical differences among groups. Methods: Patients who underwent primary hip arthroscopy for FAI by the same surgeon between August 2016 and December 2018 with minimum 2-year follow-up were enrolled. The ARO was evaluated both on the acetabular gross anatomy (AGA) and coronal sections of CT, for its position, width (unit: mm), area (unit: mm2), and CT value (unit: HU). Patients were divided into 4 groups based on the extent of ARO on coronal CT: group A (ARO anterior to 12 o'clock), group P (ARO posterior to 12 o'clock), group AP (ARO across 12 o'clock), and group N (no ARO). Inter- and intraobserver correlation was analyzed. Demographic data, FAI deformity indicators on imaging, quantitative measurements of ARO, and pre- and postoperative patient-reported outcomes were compared among groups. Results: There were 229 patients (229 hips) enrolled in total, 122 male (53.3%) and 107 female (46.7%), with a mean age of 37.2 ± 10.2 years. The correlation between 2 observers for grouping ARO using AGA was positive but poor (Kendall Tau-b coefficient = 0.157, P = .008). Moderate correlation was found between grouping based on AGA and coronal CT by the same observer (Kendall Tau-b coefficient = 0.482, P = .000). The patients were divided into 4 groups: 84 patients (36.7%) in group N, 2 patients (0.9%) in group A, 69 patients (30.1%) in group P, and 74 patients (32.3%) in group AP. Group N was younger in age (35.4 ± 10.7 years) than group P (39.6 ± 10.2 years) (P = 0.012) and had a larger proportion of women (57.1%) than group AP (36.5%) (χ2 = 6.869, P = .032). There was a greater proportion of positive posterior wall sign in group P (52.2%) than 48.6% for group AP and 33.3% for group N (χ2 = 6.397, P = .041). Group N had 61 (72.6%) Tönnis grade 0 hips compared with 37 (50%) in group AP (P = .014). No statistical significance was found among groups in pre- and postoperative α angle, lateral center-edge angle, and patient-reported outcomes. The widths of ARO in group AP for the 3 marked points from anterior to posterior were 3.88 ± 1.86, 4.84 ± 2.72, and 6.66 ± 3.18, separately (P<.001); 15.73 ± 21.46, 19.22 ± 18.86, and 29.96 ± 17.05 for area (P<.01); and 652.67 ± 214.12, 677.10 ± 274.81, and 728.84 ± 232.39 for CT value (P<.05). For the ARO posterior to 12 o'clock, the group AP showed a larger width (6.66 ± 3.18), area (29.96 ± 17.05), and CT value (728.84 ± 232.39) than group P of (4.70 ± 2.25), (20.15 ± 12.91), and (641.84 ± 183.33) (P<.001). Conclusions: The evaluation of ARO on AGA is poor consistent with definite double-rim sign on coronal CT. There is a tendency of size-enlarging and density-increasing for ARO from anterior to posterior along the acetabular rim. Younger age, female gender, lower Tönnis grade, and negative posterior wall sign showed lower rate of ARO development. Level of Evidence: Level IV, diagnostic case series.

14.
Genes Dis ; 11(3): 101026, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38292186

RESUMO

The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (ß-catenin dependent) and non-canonical (ß-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.

15.
Bioact Mater ; 34: 51-63, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38186960

RESUMO

Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-ß, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.

16.
Plast Reconstr Surg ; 153(2): 383e-396e, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070824

RESUMO

BACKGROUND: Genetic research in nonsyndromic craniosynostosis remains limited compared with syndromic craniosynostosis. This systematic review aimed to comprehensively summarize the genetic literature of nonsyndromic craniosynostosis and highlight key signaling pathways. METHODS: The authors performed a systematic literature search of PubMed, Ovid, and Google Scholar databases from inception until December of 2021 using search terms related to nonsyndromic craniosynostosis and genetics. Two reviewers screened titles and abstract for relevance, and three reviewers independently extracted study characteristics and genetic data. Gene networks were constructed using Search Tool for Retrieval of Interacting Genes/Proteins (version 11) analysis. RESULTS: Thirty-three articles published between 2001 and 2020 met inclusion criteria. Studies were further classified into candidate gene screening and variant identification studies ( n = 16), genetic expression studies ( n = 13), and common and rare variant association studies ( n = 4). Most studies were good quality. Using our curated list of 116 genes extracted from the studies, two main networks were constructed. CONCLUSIONS: This systematic review concerns the genetics of nonsyndromic craniosynostosis, with network construction revealing TGF-ß/BMP, Wnt, and NF-κB/RANKL as important signaling pathways. Future studies should focus on rare rather than common variants to examine the missing heritability in this defect and, going forward, adopt a standard definition.


Assuntos
Craniossinostoses , Humanos , Craniossinostoses/genética , Genômica , Transdução de Sinais/genética , Bases de Dados Factuais
17.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961427

RESUMO

The role of autophagy in tumorigenesis and tumor metastasis remains poorly understood. Here we show that inhibition of autophagy stabilizes the transcription factor Twist1 through Sequestosome-1 (SQSTM1, also known as p62) and thus increases cell proliferation, migration, and epithelial-mesenchymal transition (EMT) in tumor development and metastasis. Inhibition of autophagy or p62 overexpression blocks Twist1 protein degradation in the proteasomes, while p62 inhibition enhances it. SQSTM1/p62 interacts with Twist1 via the UBA domain of p62, in a Twist1-ubiquitination-dependent manner. Lysine 175 in Twist1 is critical for Twist1 ubiquitination, degradation, and SQSTM1/p62 interaction. For squamous skin cancer and melanoma cells that express Twist1, SQSTM1/p62 increases tumor growth and metastasis in mice. Together, our results identified Twist1 as a key downstream protein for autophagy and suggest a critical role of the autophagy/p62/Twist1 axis in cancer development and metastasis.

18.
Arthrosc Tech ; 12(9): e1615-e1622, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780653

RESUMO

Current treatments for labral tear include surgical debridement, arthroscopic repair, and labral reconstruction. Although labral debridement and labral suture repair are suitable for most patients, labral reconstruction is the first treatment option when there is extensive labral degeneration or defect. Often, however, the labral degeneration or defect is only detected intraoperatively; therefore, the surgeon should always have a backup plan. The current labral reconstruction technique has shortcomings such as long operation time, difficult autograft harvesting, cumbersome graft preparation, and the need for a large surgical incision and re-sterilization and draping. To address these problems, we developed a modified technique for draping and surgery. This technique ensures preparedness for labral reconstruction during each hip arthroscopic surgery. The method also simplifies the steps for autologous iliotibial band graft harvesting and shortens operative time. We have achieved satisfactory clinical results with use of this technique over the past 2 years. In this Technical Note, we describe our technique. This modified labral reconstruction technique greatly improves surgical efficiency and could be a promising surgical technique for hip labral reconstruction.

19.
Am J Transl Res ; 15(9): 5959-5960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854202

RESUMO

[This corrects the article on p. 585 in vol. 13, PMID: 33594311.].

20.
Leukemia ; 37(10): 1982-1993, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591940

RESUMO

TAL1+ T-cell acute lymphoblastic leukemia (T-ALL) is a distinct subtype of leukemia with poor outcomes. Through the cooperation of co-activators, including RUNX1, GATA3, and MYB, the TAL1 oncoprotein extends the immature thymocytes with autonomy and plays an important role in the development of T-ALL. However, this process is not yet well understood. Here, by investigating the transcriptome and prognosis of T-ALL from multiple cohorts, we found that S1PR3 was highly expressed in a subset of TAL1+ T-ALL (S1PR3hi TAL1+ T-ALL), which showed poor outcomes. Through pharmacological and genetic methods, we identified a specific survival-supporting role of S1P-S1PR3 in TAL1+ T-ALL cells. In T-ALL cells, TAL1-RUNX1 up-regulated the expression of S1PR3 by binding to the enhancer region of S1PR3 gene. With hyperactivated S1P-S1PR3, T-ALL cells grew rapidly, partly by activating the KRAS signal. Finally, we assessed S1PR3 inhibitor TY-52156 in T-ALL patient-derived xenografts (PDXs) mouse model. We found that TY-52156 attenuated leukemia progression efficiently and extended the lifespan of S1PR3hi TAL1+ T-ALL xenografts. Our findings demonstrate that S1PR3 plays an important oncogenic role in S1PR3hi TAL1+ T-ALL and may serve as a promising therapeutic target.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Timócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA