Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Noncoding RNA Res ; 9(2): 536-546, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511052

RESUMO

PRKAG2 is required for the maintenance of cellular energy balance. PRKAG2-AS1, a long non-coding RNA (lncRNA), was found within the promoter region of PRKAG2. Despite the extensive expression of PRKAG2-AS1 in endothelial cells, the precise function and mechanism of this gene in endothelial cells have yet to be elucidated. The localization of PRKAG2-AS1 was predominantly observed in the nucleus, as revealed using nuclear and cytoplasmic fractionation and fluorescence in situ hybridization. The manipulation of PRKAG2-AS1 by knockdown and overexpression within the nucleus significantly altered PRKAG2 expression in a cis-regulatory manner. The expression of PRKAG2-AS1 and its target genes, PRKAG2b and PRKAG2d, was down-regulated in endothelial cells subjected to oxLDL and Hcy-induced injury. This finding suggests that PRKAG2-AS1 may be involved in the mechanism behind endothelial injury. The suppression of PRKAG2-AS1 specifically in the nucleus led to an upregulation of inflammatory molecules such as cytokines, adhesion molecules, and chemokines in endothelial cells. Additionally, this nuclear suppression of PRKAG2-AS1 facilitated the adherence of THP1 cells to endothelial cells. We confirmed the role of nuclear knockdown PRKAG2-AS1 in the induction of apoptosis and inhibition of cell proliferation, migration, and lumen formation through flow cytometry, TUNEL test, CCK8 assay, and cell scratching. Finally, it was determined that PRKAG2-AS1 exerts direct control over the transcription of PRKAG2 by its binding to their promoters. In conclusion, downregulation of PRKAG2-AS1 suppressed the proliferation and migration, promoted inflammation and apoptosis of endothelial cells, and thus contributed to the development of atherosclerosis resulting from endothelial cell injury.

2.
Clin Epigenetics ; 15(1): 178, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932845

RESUMO

The role of PRKAG2 in the maintenance of heart function is well established, but little is known about how PRKAG2 is regulated in cardiomyocytes. In this study, we investigated the role of the lncRNA PRKAG2-AS, which is present at the PRKAG2 promoter, in the regulation of PRKAG2 expression. PRKAG2-AS expression was predominantly nuclear, as determined by RNA nucleoplasmic separation and fluorescence in situ hybridization. Knockdown of PRKAG2-AS in the nucleus, but not the cytoplasm, significantly decreased the expression of PRKAG2b and PRKAG2d. Interestingly, we found that PRKAG2-AS and its target genes, PRKAG2b and PRKAG2d, were reduced in the hearts of patients with ischemic cardiomyopathy, suggesting a potential role for PRKAG2-AS in myocardial ischemia. Indeed, knockdown of PRKAG2-AS in the nucleus resulted in apoptosis of cardiomyocytes. We further elucidated the mechanism by which PRKAG2-AS regulates PRKAG2 transcription by identifying 58 PRKAG2-AS interacting proteins. Among them, PPARG was selected for further investigation based on its correlation and potential interaction with PRKAG2-AS in regulating transcription. Overexpression of PPARG, or its activation with rosiglitazone, led to a significant increase in the expression of PRKAG2b and PRKAG2d in cardiomyocytes, which could be attenuated by PRKAG2-AS knockdown. This finding suggests that PRKAG2-AS mediates, at least partially, the protective effects of rosiglitazone on hypoxia-induced apoptosis. However, given the risk of rosiglitazone in heart failure, we also examined the involvement of PRKAG2-AS in this condition and found that PRKAG2-AS, as well as PRKAG2b and PRKAG2d, was elevated in hearts with dilated cardiomyopathy (DCM) and that overexpression of PRKAG2-AS led to a significant increase in PRKAG2b and PRKAG2d expression, indicating that up-regulation of PRKAG2-AS may contribute to the mechanism of heart failure by promoting transcription of PRKAG2. Consequently, proper expression of PRKAG2-AS is essential for maintaining cardiomyocyte function, and aberrant PRKAG2-AS expression induced by hypoxia or other stimuli may cause cardiac dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP , Insuficiência Cardíaca , Isquemia Miocárdica , PPAR gama , RNA Longo não Codificante , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Metilação de DNA , Insuficiência Cardíaca/genética , Hipóxia , Hibridização in Situ Fluorescente , Miócitos Cardíacos/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Rosiglitazona/metabolismo , RNA Longo não Codificante/genética
3.
RNA ; 24(12): 1738-1748, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30185624

RESUMO

Stem-loop binding protein (SLBP) is required for replication-dependent histone mRNA metabolism in mammals. Zebrafish possesses two slbps, and slbp1 is necessary for retinal neurogenesis. However, the detailed expression and function of slbp2 in zebrafish are still unknown. In this study, we first identified zebrafish slbp2 as an oocyte-specific maternal factor and then generated a maternal-zygotic slbp2 F3 homozygous mutant (MZslbp2Δ4-/-) using CRISPR/Cas9. The depletion of maternal Slbp2 disrupted early nuclear cleavage, which resulted in developmental arrest at the MBT stage. The developmental defects could be rescued in slbp2 transgenic MZslbp2Δ4-/- embryos. However, homozygous mutant MZslbp1Δ1-/- developed normally, indicating slbp1 is dispensable for zebrafish early embryogenesis. Through comparative proteome and transcriptome profiling between WT and MZslbp2Δ4-/- embryos, we identified many differentially expressed proteins and genes. In comparison with those in WT embryos, four replication-dependent histones, including H2a, H2b, H3, and H4, all reduced their expression, while histone variant h2afx significantly increased in MZslbp2Δ4-/- embryos at the 256-cell stage and high stage. Zebrafish Slbp2 can bind histone mRNA stem-loop in vitro, and the defects of MZslbp2Δ4-/- embryos can be partially rescued by overexpression of H2b. The current data indicate that maternal Slbp2 plays a pivotal role in the storage of replication-dependent histone mRNAs and proteins during zebrafish oogenesis.


Assuntos
Desenvolvimento Embrionário/genética , Histonas/genética , Oogênese/genética , Proteínas de Ligação a RNA/genética , Animais , Núcleo Celular/genética , Replicação do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/crescimento & desenvolvimento , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Zigoto/crescimento & desenvolvimento , Fatores de Poliadenilação e Clivagem de mRNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...