Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Sci (Weinh) ; 11(18): e2305724, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483933

RESUMO

Prostate cancer (PCa) is an extensive heterogeneous disease with a complex cellular ecosystem in the tumor microenvironment (TME). However, the manner in which heterogeneity is shaped by tumors and stromal cells, or vice versa, remains poorly understood. In this study, single-cell RNA sequencing, spatial transcriptomics, and bulk ATAC-sequence are integrated from a series of patients with PCa and healthy controls. A stemness subset of club cells marked with SOX9highARlow expression is identified, which is markedly enriched after neoadjuvant androgen-deprivation therapy (ADT). Furthermore, a subset of CD8+CXCR6+ T cells that function as effector T cells is markedly reduced in patients with malignant PCa. For spatial transcriptome analysis, machine learning and computational intelligence are comprehensively utilized to identify the cellular diversity of prostate cancer cells and cell-cell communication in situ. Macrophage and neutrophil state transitions along the trajectory of cancer progression are also examined. Finally, the immunosuppressive microenvironment in advanced PCa is found to be associated with the infiltration of regulatory T cells (Tregs), potentially induced by an FAP+ fibroblast subset. In summary, the cellular heterogeneity is delineated in the stage-specific PCa microenvironment at single-cell resolution, uncovering their reciprocal crosstalk with disease progression, which can be helpful in promoting PCa diagnosis and therapy.


Assuntos
Neoplasias da Próstata , Análise de Célula Única , Microambiente Tumoral , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Análise de Célula Única/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Perfilação da Expressão Gênica/métodos , Multiômica
3.
Blood ; 143(19): 1965-1979, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38271660

RESUMO

ABSTRACT: Acute myeloid leukemia (AML) is an aggressive hematological malignancy originating from transformed hematopoietic stem or progenitor cells. AML prognosis remains poor owing to resistance and relapse driven by leukemia stem cells (LSCs). Targeting molecules essential for LSC function is a promising therapeutic approach. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is often dysregulated in AML. We found that although PI3Kγ is highly enriched in LSCs and critical for self-renewal, it was dispensable for normal hematopoietic stem cells. Mechanistically, PI3Kγ-AKT signaling promotes nuclear factor erythroid 2-related factor 2 (NRF2) nuclear accumulation, which induces 6-phosphogluconate dehydrogenase (PGD) and the pentose phosphate pathway, thereby maintaining LSC stemness. Importantly, genetic or pharmacological inhibition of PI3Kγ impaired expansion and stemness of murine and human AML cells in vitro and in vivo. Together, our findings reveal a key role for PI3Kγ in selectively maintaining LSC function by regulating AKT-NRF2-PGD metabolic pathway. Targeting the PI3Kγ pathway may, therefore, eliminate LSCs without damaging normal hematopoiesis, providing a promising therapeutic strategy for AML.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Via de Pentose Fosfato , Animais , Humanos , Camundongos , Autorrenovação Celular , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Via de Pentose Fosfato/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
4.
Cell Res ; 34(1): 13-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163844

RESUMO

Oxidative phosphorylation (OXPHOS) consumes oxygen to produce ATP. However, the mechanism that balances OXPHOS activity and intracellular oxygen availability remains elusive. Here, we report that mitochondrial protein lactylation is induced by intracellular hypoxia to constrain OXPHOS. We show that mitochondrial alanyl-tRNA synthetase (AARS2) is a protein lysine lactyltransferase, whose proteasomal degradation is enhanced by proline 377 hydroxylation catalyzed by the oxygen-sensing hydroxylase PHD2. Hypoxia induces AARS2 accumulation to lactylate PDHA1 lysine 336 in the pyruvate dehydrogenase complex and carnitine palmitoyltransferase 2 (CPT2) lysine 457/8, inactivating both enzymes and inhibiting OXPHOS by limiting acetyl-CoA influx from pyruvate and fatty acid oxidation, respectively. PDHA1 and CPT2 lactylation can be reversed by SIRT3 to activate OXPHOS. In mouse muscle cells, lactylation is induced by lactate oxidation-induced intracellular hypoxia during exercise to constrain high-intensity endurance running exhaustion time, which can be increased or decreased by decreasing or increasing lactylation levels, respectively. Our results reveal that mitochondrial protein lactylation integrates intracellular hypoxia and lactate signals to regulate OXPHOS.


Assuntos
Proteínas Mitocondriais , Fosforilação Oxidativa , Camundongos , Animais , Proteínas Mitocondriais/metabolismo , Lisina/metabolismo , Hipóxia , Oxigênio , Lactatos
5.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37425798

RESUMO

Vitamin C (vitC) is a vital nutrient for health and also used as a therapeutic agent in diseases such as cancer. However, the mechanisms underlying vitC's effects remain elusive. Here we report that vitC directly modifies lysine without enzymes to form vitcyl-lysine, termed "vitcylation", in a dose-, pH-, and sequence-dependent manner across diverse proteins in cells. We further discover that vitC vitcylates K298 site of STAT1, which impairs its interaction with the phosphatase PTPN2, preventing STAT1 Y701 dephosphorylation and leading to increased STAT1-mediated IFN pathway activation in tumor cells. As a result, these cells have increased MHC/HLA class-I expression and activate immune cells in co-cultures. Tumors collected from vitC-treated tumor-bearing mice have enhanced vitcylation, STAT1 phosphorylation and antigen presentation. The identification of vitcylation as a novel PTM and the characterization of its effect in tumor cells opens a new avenue for understanding vitC in cellular processes, disease mechanisms, and therapeutics.

6.
Nature ; 616(7958): 790-797, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36921622

RESUMO

Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular , Ciclo Celular , Ácido Láctico , Humanos , Anáfase , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ácido Láctico/metabolismo , Mitose
7.
Nat Commun ; 13(1): 3022, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641483

RESUMO

PARP inhibitors (PARPi) have drastically changed the treatment landscape of advanced ovarian tumors with BRCA mutations. However, the impact of this class of inhibitors in patients with advanced BRCA-mutant breast cancer is relatively modest. Using a syngeneic genetically-engineered mouse model of breast tumor driven by Brca1 deficiency, we show that tumor-associated macrophages (TAMs) blunt PARPi efficacy both in vivo and in vitro. Mechanistically, BRCA1-deficient breast tumor cells induce pro-tumor polarization of TAMs, which in turn suppress PARPi-elicited DNA damage in tumor cells, leading to reduced production of dsDNA fragments and synthetic lethality, hence impairing STING-dependent anti-tumor immunity. STING agonists reprogram M2-like pro-tumor macrophages into an M1-like anti-tumor state in a macrophage STING-dependent manner. Systemic administration of a STING agonist breaches multiple layers of tumor cell-mediated suppression of immune cells, and synergizes with PARPi to suppress tumor growth. The therapeutic benefits of this combination require host STING and are mediated by a type I IFN response and CD8+ T cells, but do not rely on tumor cell-intrinsic STING. Our data illustrate the importance of targeting innate immune suppression to facilitate PARPi-mediated engagement of anti-tumor immunity in breast cancer.


Assuntos
Neoplasias da Mama , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Proteína BRCA1/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linfócitos T CD8-Positivos , Feminino , Humanos , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutações Sintéticas Letais , Macrófagos Associados a Tumor
8.
Cell Rep ; 38(11): 110509, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294873

RESUMO

Protein fatty acylation regulates numerous cell signaling pathways. Polyunsaturated fatty acids (PUFAs) exert a plethora of physiological effects, including cell signaling regulation, with underlying mechanisms to be fully understood. Herein, we report that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) regulate PI3K-AKT signaling by modifying PDK1 and AKT2. DHA-administered mice exhibit altered phosphorylation of proteins in signaling pathways. Methylene bridge-containing DHA/EPA acylate δ1 carbon of tryptophan 448/543 in PDK1 and tryptophan 414 in AKT2 via free radical pathway, recruit both the proteins to the cytoplasmic membrane, and activate PI3K signaling and glucose uptake in a tryptophan acylation-dependent but insulin-independent manner in cultured cells and in mice. DHA/EPA deplete cytosolic PDK1 and AKT2 and induce insulin resistance. Akt2 knockout in mice abrogates DHA/EPA-induced PI3K-AKT signaling. Our results identify PUFA's methylene bridge tryptophan acylation, a protein fatty acylation that regulates cell signaling and may underlie multifaceted effects of methylene-bridge-containing PUFAs.


Assuntos
Fosfatidilinositol 3-Quinases , Triptofano , Acilação , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Insaturados , Glucose/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Triptofano/metabolismo
9.
Biol Proced Online ; 21: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798349

RESUMO

BACKGROUND: Lysine post-translational modifications are important regulators of protein function. Proteomic and biochemical approaches have resulted in identification of several lysine modifications, including acetylation, crotonylation, and succinylation. Here, we developed an approach for surveying amide-bonded lysine modifications in the proteome of human tissues/cells based on the observation that many lysine modifications are amide-bonded and that the Salmonella enterica deacetylase, CobB, is an amidase. RESULTS: After the proteome of human tissues/cells was denatured and the non-covalently bonded metabolites were removed by acetone washes, and the amide-bonded modifiers were released by CobB and analyzed using liquid- and/or gas chromatography/mass spectrometry metabolomic analysis. This protocol, which required 3-4 days for completion, was used to qualitatively identify more than 40 documented and unreported lysine modifications from the human proteome and to quantitatively analyze dynamic changes in targeted amide-bonded lysine modifications. CONCLUSIONS: We developed a method that was capable of monitoring and quantifying amide-bonded lysine modifications in cells of different origins.

10.
Nat Cell Biol ; 20(2): 186-197, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29358703

RESUMO

Receptor-interacting protein kinase 3 (RIP3)-regulated production of reactive oxygen species (ROS) positively feeds back on tumour necrosis factor (TNF)-induced necroptosis, a type of programmed necrosis. Glutamine catabolism is known to contribute to RIP3-mediated ROS induction, but the major contributor is unknown. Here, we show that RIP3 activates the pyruvate dehydrogenase complex (PDC, also known as PDH), the rate-limiting enzyme linking glycolysis to aerobic respiration, by directly phosphorylating the PDC E3 subunit (PDC-E3) on T135. Upon activation, PDC enhances aerobic respiration and subsequent mitochondrial ROS production. Unexpectedly, mixed-lineage kinase domain-like (MLKL) is also required for the induction of aerobic respiration, and we further show that it is required for RIP3 translocation to meet mitochondria-localized PDC. Our data uncover a regulation mechanism of PDC activity, show that PDC activation by RIP3 is most likely the major mechanism activated by TNF to increase aerobic respiration and its by-product ROS, and suggest that RIP3-dependent induction of aerobic respiration contributes to pathologies related to oxidative stress.


Assuntos
Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Complexo Piruvato Desidrogenase/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Apoptose/genética , Morte Celular/genética , Respiração Celular/genética , Humanos , Mitocôndrias/genética , Necrose/genética , Complexo Piruvato Desidrogenase/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Cell Metab ; 27(1): 151-166.e6, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29198988

RESUMO

Amino acids are known regulators of cellular signaling and physiology, but how they are sensed intracellularly is not fully understood. Herein, we report that each aminoacyl-tRNA synthetase (ARS) senses its cognate amino acid sufficiency through catalyzing the formation of lysine aminoacylation (K-AA) on its specific substrate proteins. At physiologic levels, amino acids promote ARSs bound to their substrates and form K-AAs on the ɛ-amine of lysines in their substrates by producing reactive aminoacyl adenylates. The K-AA marks can be removed by deacetylases, such as SIRT1 and SIRT3, employing the same mechanism as that involved in deacetylation. These dynamically regulated K-AAs transduce signals of their respective amino acids. Reversible leucylation on ras-related GTP-binding protein A/B regulates activity of the mammalian target of rapamycin complex 1. Glutaminylation on apoptosis signal-regulating kinase 1 suppresses apoptosis. We discovered non-canonical functions of ARSs and revealed systematic and functional amino acid sensing and signal transduction networks.


Assuntos
Aminoacilação , Espaço Intracelular/metabolismo , Lisina/metabolismo , Transdução de Sinais , Aminoacil-tRNA Sintetases/metabolismo , Apoptose , Biocatálise , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Especificidade por Substrato
12.
Nat Commun ; 8(1): 464, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878358

RESUMO

The oncogenic mechanisms of overnutrition, a confirmed independent cancer risk factor, remain poorly understood. Herein, we report that enoyl-CoA hydratase-1 (ECHS1), the enzyme involved in the oxidation of fatty acids (FAs) and branched-chain amino acids (BCAAs), senses nutrients and promotes mTOR activation and apoptotic resistance. Nutrients-promoted acetylation of lys101 of ECHS1 impedes ECHS1 activity by impairing enoyl-CoA binding, promoting ECHS1 degradation and blocking its mitochondrial translocation through inducing ubiquitination. As a result, nutrients induce the accumulation of BCAAs and FAs that activate mTOR signaling and stimulate apoptosis, respectively. The latter was overcome by selection of BCL-2 overexpressing cells under overnutrition conditions. The oncogenic effects of nutrients were reversed by SIRT3, which deacetylates lys101 acetylation. Severely decreased ECHS1, accumulation of BCAAs and FAs, activation of mTOR and overexpression of BCL-2 were observed in cancer tissues from metabolic organs. Our results identified ECHS1, a nutrients-sensing protein that transforms nutrient signals into oncogenic signals.Overnutrition has been linked to increased risk of cancer. Here, the authors show that exceeding nutrients suppress Enoyl-CoA hydratase-1 (ECHS1) activity by inducing its acetylation resulting in accumulation of fatty acids and branched-chain amino acids and oncogenic mTOR activation.


Assuntos
Apoptose , Enoil-CoA Hidratase/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Acetilação , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Carcinogênese , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Células Hep G2 , Humanos , Lisina/química , Masculino , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Proteínas Recombinantes/química , Sirtuína 3/metabolismo , Ubiquitina/química
13.
FEBS J ; 283(22): 4149-4162, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27696686

RESUMO

Hyperhomocysteinemia, which is characterized by elevated blood levels of the non-protein amino acid homocysteine (Hcy), is an independent risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases and birth defects. The incorporation of homocysteine into proteins, known as protein N-homocysteinylation, has been considered a major mechanism that contributes to hyperhomocysteinemia. However, the process of dehomocysteinylation, the N-homocysteinylation substrates and the regulatory enzyme(s) remain largely unknown. In this study, we observed that the dehomocysteinylation reaction is a spontaneous process that can be inhibited by blocking -SH groups, which have been demonstrated to be critical for non-enzymatic dehomocysteinylation reactions. We also report that CobB, a known Sir2-like bacterial lysine deacetylase, catalyzes lysine dehomocysteinylation reactions both in vitro and in vivo. Our work provides insight into how this non-enzymatic modification might be removed from affected proteins, supplies potential targets for developing identification methods for N-homocysteine proteins, and identifies CobB as the first prokaryotic dehomocysteinylation enzyme.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Histona Desacetilases/metabolismo , Homocisteína/metabolismo , Sirtuína 2/metabolismo , Animais , Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/genética , Bovinos , Células HEK293 , Homocisteína/análogos & derivados , Homocisteína/química , Humanos , Immunoblotting , Cinética , Lisina/metabolismo , Camundongos , Modelos Químicos , Estrutura Molecular , Mutação , Células NIH 3T3 , Processamento de Proteína Pós-Traducional , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo
14.
Mol Cell ; 62(3): 359-370, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153534

RESUMO

Metabolic reprogramming is fundamental to biological homeostasis, enabling cells to adjust metabolic routes after sensing altered availability of fuels and growth factors. ULK1 and ULK2 represent key integrators that relay metabolic stress signals to the autophagy machinery. Here, we demonstrate that, during deprivation of amino acid and growth factors, ULK1/2 directly phosphorylate key glycolytic enzymes including hexokinase (HK), phosphofructokinase 1 (PFK1), enolase 1 (ENO1), and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP1). Phosphorylation of these enzymes leads to enhanced HK activity to sustain glucose uptake but reduced activity of FBP1 to block the gluconeogenic route and reduced activity of PFK1 and ENO1 to moderate drop of glucose-6-phosphate and to repartition more carbon flux to pentose phosphate pathway (PPP), maintaining cellular energy and redox homeostasis at cellular and organismal levels. These results identify ULK1/2 as a bifurcate-signaling node that sustains glucose metabolic fluxes besides initiation of autophagy in response to nutritional deprivation.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Glucose/metabolismo , Glicólise , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Via de Pentose Fosfato , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Aminoácidos/deficiência , Aminoácidos/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/deficiência , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Biomarcadores Tumorais/metabolismo , Morte Celular , Proteínas de Ligação a DNA/metabolismo , Feminino , Frutose-Bifosfatase/metabolismo , Genótipo , Células HCT116 , Hexoquinase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células MCF-7 , Masculino , Camundongos Knockout , Fenótipo , Fosfofrutoquinase-1/metabolismo , Fosfopiruvato Hidratase/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/metabolismo
15.
Mol Cell ; 60(4): 661-75, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26585387

RESUMO

Elucidating the tumorigenic mechanism of R-2-hydroxyglutarate (R-2HG) is critical for determining how NADP(+)-IDH mutations cause cancer. Here we report that R-2HG induces cancerous metabolism and apoptosis resistance through promoting hypersuccinylation. By competitive inhibition of the mitochondrial tricarboxylic acid cycle enzyme succinate dehydrogenase (SDH), R-2HG preferentially induced succinyl-CoA accumulation and hypersuccinylation in the mitochondria. IDH1 mutation-bearing glioma samples and cells were hypersuccinylated in the mitochondria. IDH1 mutation or SDH inactivation resulted in hypersuccinylation, causing respiration inhibition and inducing cancerous metabolism and mitochondrial depolarization. These mitochondrial dysfunctions induced BCL-2 accumulation at the mitochondrial membrane, leading to apoptosis resistance of hypersuccinylated cells. Relief of hypersuccinylation by overexpressing the desuccinylase SIRT5 or supplementing glycine rescued mitochondrial dysfunctions, reversed BCL-2 accumulation, and slowed the oncogenic growth of hypersuccinylated IDH1(R132C)-harboring HT1080 cells. Thus, R-2HG-induced hypersuccinylation contributes to the tumorigenicity of NADP(+)-IDH mutations, suggesting the potential of hypersuccinylation inhibition as an intervention for hypersuccinylation-related tumors.


Assuntos
Glutaratos/farmacologia , Isocitrato Desidrogenase/genética , Mitocôndrias/efeitos dos fármacos , Mutação , Neoplasias Experimentais/metabolismo , Ácido Succínico/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Mitocôndrias/metabolismo , Neoplasias Experimentais/genética , Succinato Desidrogenase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...