Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257261

RESUMO

Chemical investigation of Penicillium sp. GDGJ-N37, a Sophora tonkinensis-associated fungus, yielded two new azaphilone derivatives, N-isoamylsclerotiorinamine (1) and 7-methoxyl-N-isoamylsclerotiorinamine (2), and four known azaphilones (3-6), together with two new chromone derivatives, penithochromones X and Y (7 and 8). Their structures were elucidated based on spectroscopic data, CD spectrum, and semi-synthesis. Sclerotioramine (3) showed significant antibacterial activities against B. subtilis and S. dysentery, and it also showed most potent anti-plant pathogenic fungi activities against P. theae, C. miyabeanus, and E. turcicum.


Assuntos
Anti-Infecciosos , Penicillium , Sophora , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Fungos
2.
Colloids Surf B Biointerfaces ; 181: 767-777, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31234064

RESUMO

Bone restoration and related infection in bone defect repair remain thorny problems in clinical practice. Herein, a drug-loaded (chlorogenic acid, CGA)/grafted peptide (BFP) hydrogel system supported on a sulfonated polyetheretherketone (SPEEK) surface is constructed to address the problem of large-scale defects and related infections in clinical bone implantation. Briefly, the encapsulated chlorogenic acid is released during hydrogel degradation and can inhibit the growth of bacteria and provide a bacteria-free environment for new bone formation. In vitro experiments and cell adhesion/proliferation evaluation reveal that the chlorogenic acid-sodium alginate-peptide bridging system shows better bioaffinity than the control groups due to the BFP peptide on the surface of the hydrogel. In addition, bacterial experiments suggest that the released chlorogenic acid has excellent antibacterial activity against gram-negative and gram-positive bacteria. Therefore, the hydrogel bridging system has a prospective application in clinical applications for bone repair.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Cetonas/farmacologia , Osteogênese/efeitos dos fármacos , Peptídeos/química , Polietilenoglicóis/farmacologia , Células 3T3 , Animais , Antibacterianos/química , Benzofenonas , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cetonas/química , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros , Porosidade , Propriedades de Superfície
3.
Macromol Biosci ; 19(2): e1800376, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30549406

RESUMO

Defective osteogenesis and latent infections continue to be two major issues in the therapy of bone tissue regeneration. In this study, a unique hierarchically micro/nanoscale-architecture is first proposed and produced on polyetheretherketone (PEEK). Besides, a "simvastatin-PLLA film-tobramycin microspheres" delivery system is subsequently fabricated to endow the PEEK implant with osteogenic and antibacterial capabilities. In vitro antibacterial evaluations confirm that the decorated PEEK scaffolds possess excellent resistance against planktonic/adherent bacteria. In vitro cell attachment/proliferation, lactate dehydrogenase (LDH) content, alkaline phosphatase (ALP) activity, calcium mineral deposition experiments, and real-time PCR analysis all exhibit that the superior proliferation rate and osteo-differentiation potential of MC3T3-E1 pre-osteoblasts are presented on the PEEK samples with dual functional decoration. In the mouse calvarial defect model, the micro-CT and histological results demonstrate that our scaffolds display a remarkable bone forming capability. Generally, the PEEK scaffolds co-endowed with simvastatin and tobramycin microspheres possess great potential in clinics.


Assuntos
Biofilmes/crescimento & desenvolvimento , Desenvolvimento Ósseo/fisiologia , Regeneração Óssea/fisiologia , Substitutos Ósseos/farmacologia , Cetonas/farmacologia , Osteogênese/fisiologia , Polietilenoglicóis/farmacologia , Células 3T3 , Fosfatase Alcalina/análise , Animais , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Benzofenonas , Osso e Ossos/citologia , Linhagem Celular , Sistemas de Liberação de Medicamentos , Escherichia coli/crescimento & desenvolvimento , L-Lactato Desidrogenase/análise , Camundongos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Polímeros , Sinvastatina/farmacologia , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície , Tobramicina/farmacologia
4.
J Biomater Sci Polym Ed ; 29(18): 2237-2251, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30307376

RESUMO

A strategy developed for obtaining positive cellular responses remains to be focused in the filed of functional biomimetics. In this study, a hydrogel covered simvastatin-loaded polyetheretherketone (PEEK) bio-composites was constructed with the purpose of bone tissue regeneration therapy. Briefly, a three-dimensional (3D) porous structure was fabricated on PEEK surface; then the substrate was functionalized with the poly(L-lactic acid)/simvastatin porous film and hyaluronic acid hydrogel subsequently. In vitro cell attachment, proliferation, and cytoskeletal observation experiments reveal that our scaffolds show better bio-affinity due to the layer of hyaluronic acid hydrogel compared with control. Furthermore, the alkaline phosphatase activity, calcium mineral deposition evaluation, and gene expression for osteogenic potential all exhibit that the superior osteogenic differentiation of MC3T3-E1 pre-osteoblasts on our scaffolds. Therefore, our PEEK samples loaded with simvastatin and covered with hyaluronic acid hydrogel hold great potential in clinical applications for bone repair.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Cetonas/química , Osteogênese/efeitos dos fármacos , Polietilenoglicóis/química , Sinvastatina/administração & dosagem , Alicerces Teciduais/química , Células 3T3 , Animais , Benzofenonas , Materiais Biocompatíveis , Regeneração Óssea , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Ácido Hialurônico/química , Camundongos , Osteoblastos/química , Poliésteres/química , Polímeros
5.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 5): m518-9, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-21583762

RESUMO

In the title compound, {[Zn(C(9)H(9)N(5))(2)(H(2)O)(2)](ClO(4))(2)}(n), the Zn(II) ion lies on an inversion center and is coordinated by two triazolyl N atoms and two pyridyl N atoms from four symmetry-related N-1-(3-pyrid-yl)ethyl-idene-4H-1,2,4-triazol-4-amine (L) ligands and two O atoms from coordinated water mol-ecules in a slightly distorted octa-hedral environment. Each L ligand bridges symmetry-related Zn(II) ions, forming a two-dimensional layer with a (4,4) grid. In the crystal structure, inter-molecular O-H⋯O hydrogen bonds connect perchlorate counter-anions to the layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...