Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(16): e2311970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198824

RESUMO

[4-(3,6-dimethyl-9H-carbazol-9yl)butyl]phosphonic acid (Me-4PACz) self-assembled molecules (SAM) are an effective method to solve the problem of the buried interface of NiOx in inverted perovskite solar cells (PSCs). However, the Me-4PACz end group (carbazole core) cannot forcefully passivate defects at the bottom of the perovskite film. Here, a Co-SAM strategy is employed to modify the buried interface of PSCs. Me-4PACz is doped with phosphorylcholine chloride (PC) to form a Co-SAM to improve the monolayer coverage and reduce leakage current. The phosphate group and chloride ions (Cl-) in PC can inhibit NiOx surface defects. Meantime, the quaternary ammonium ions and Cl- in PC can fill organic cations and halogen vacancies in the perovskite film to enable defects passivation. Moreover, Co-SAM can promote the growth of perovskite crystals, collaboratively solve the problem of buried defects, suppress nonradiative recombination, accelerate carrier transmission, and relieve the residual stress of the perovskite film. Consequently, the Co-SAM modified devices show power conversion efficiencies as high as 25.09% as well as excellent device stability with 93% initial efficiency after 1000 h of operation under one-sun illumination. This work demonstrates the novel approach for enhancing the performance and stability of PSCs by modifying Co-SAM on NiOx.

2.
Adv Mater ; 36(2): e2306724, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37863645

RESUMO

The abundant oxygen-related defects (e.g., O vacancies, O-H) in the TiO2 electron transport layer results in high surface energy, which is detrimental to effective carrier extraction and seriously impairs the photovoltaic performance and stability of perovskite solar cells. Here, novel surface energy engineering (SEE) is developed by applying a surfactant of heptadecafluorooctanesulfonate tetraethylammonium (HFSTA) on the surface of the TiO2 . Theoretical calculations show that the HFSTA-TiO2 is less prone to form O vacancies, leading to lower surface energy, thus improving the carrier-extraction efficiency. The experimental results show that superior perovskite film is obtained due to the reduced heterogeneous nucleation sites and improved crystallization process on the modified TiO2 . Furthermore, the flexible long alkyl chains in HFSTA considerably relieve the compressive stresses at the buried interface. By combining the passivation of TiO2 , crystallization process modulation, and stress relief, a champion PCE up to 25.03% is achieved. The device without encapsulation sustains 92.2% of its initial PCE after more than 2500 h storage under air ambient with relative humidity of 25-30%. The SEE of a buried interface paves a new way toward high-efficiency, stable perovskite solar cells.

3.
Adv Mater ; 34(10): e2106750, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34964993

RESUMO

All-inorganic cesium lead triiodide (CsPbI3 ) perovskite is well known for its unparalleled stability at high temperatures up to 500 °C and under oxidative chemical stresses. However, upscaling solar cells via ambient printing suffers from imperfect crystal quality and defects caused by uncontrollable crystallization. Here, the incorporation of a low concentration of novel ionic liquid is reported as being promising for managing defects in CsPbI3 films, interfacial energy alignment, and device stability of solar cells fabricated via ambient blade-coating. Both theoretical simulations and experimental measurements reveal that the ionic liquid successfully regulates the perovskite thin-film growth to decrease perovskite grain boundaries, strongly coordinates with the undercoordinated Pb2+ to passivate iodide vacancy defects, aligns the interface to decrease the energy barrier at the electron-transporting layer, and relaxes the lattice strain to promote phase stability. Consequently, ambient printed CsPbI3 solar cells with power conversion efficiency as high as 20.01% under 1 sun illumination (100 mW cm-2 ) and 37.24% under indoor light illumination (1000 lux, 365 µW cm-2 ) are achieved; both are the highest for printed all-inorganic cells for corresponding applications. Furthermore, the bare cells show an impressive long-term ambient stability with only ≈5% PCE degradation after 1000 h aging under ambient conditions.

4.
Adv Mater ; 33(27): e2100770, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057256

RESUMO

Perovskite solar cells exhibit not only high efficiency under full AM1.5 sunlight, but also have great potential for applications in low-light environments, such as indoors, cloudy conditions, early morning, late evening, etc. Unfortunately, their performance still suffers from severe trap-induced nonradiative recombination, particularly under low-light conditions. Here, a holistic passivation strategy is developed to reduce traps both on the surface and in the bulk of micrometer-thick perovskite film, leading to a record efficiency of 40.1% under 301.6 µW cm-2 warm light-emitting diode (LED) light for low-light solar-cell applications. The involvement of guanidinium into the perovskite bulk film and 2-(4-methoxyphenyl)ethylamine hydrobromide (CH3 O-PEABr) passivation on the perovskite surface synergistically suppresses the trap states. The charge carrier lifetimes of the perovskite film increase by tenfold and fivefold to 981 ns and 8.02 µs at the crystal surface and in its bulk, respectively. The decreased nonradiative recombination loss translates to a high open-circuit voltage (Voc ) of 1.00 V, a high short-circuit current (Jsc ) of 152.10 µA cm-2 , and a fill factor (FF) of 79.52%. Note that this performance also stands as the highest among all photovoltaics measured under indoor light illumination. This work of trap passivation for micrometer-thick perovskite film paves a way for high-performance, self-powered IoT devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...